IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v66y2018icp116-124.html
   My bibliography  Save this article

Investigating the urban heat island effect of transit oriented development in Brisbane

Author

Listed:
  • Kamruzzaman, Md.
  • Deilami, Kaveh
  • Yigitcanlar, Tan

Abstract

Transit oriented development (TOD) has been identified as a key planning tool to limit sprawl development and thereby to tackle a range of undesirable outcomes of cities. Generally, research findings are supportive of TOD policies over sprawl development in many aspects such as reducing car-dependency, congestion, and emissions. Although sprawl development has been identified as a key factor of the urban heat island (UHI) effect, a phenomenon when an urban area experiences a higher temperature compared to its surrounding non-urban areas, existing empirical studies, however, lack to answer whether TODs are likely to reduce the UHI effect. Using Brisbane as a case, this research answers this question by: a) identifying TOD neighbourhoods based on a cluster analysis of six built environment factors (residential density, employment density, land use diversity, intersection and cul-de-sac densities, public transport accessibility levels); b) validating the selection of TOD neighbourhoods based on travel behaviour analysis of residents living between TOD and non-TOD areas; c) examining patterns of UHI effects between the areas and their changes over the period of 2004–2013 based on Landsat remote sensing data; and d) identifying the factors contributing to the UHI effects in TODs. Results show that TODs experienced a higher level of UHI effect compared to non-TOD areas. Although both areas experienced an increase in the UHI effect between the periods, the rate of increase was found to be significantly higher in TOD areas. Land use diversity, percentage of porous land vis-à-vis density significantly contributed to the UHI effect. The findings suggest that a compromise between natural and built-up areas is essential to reduce the UHI effect while contributing to the ultimate goal of TODs – i.e. to create settings which prompt people to drive less and ride public transit more.

Suggested Citation

  • Kamruzzaman, Md. & Deilami, Kaveh & Yigitcanlar, Tan, 2018. "Investigating the urban heat island effect of transit oriented development in Brisbane," Journal of Transport Geography, Elsevier, vol. 66(C), pages 116-124.
  • Handle: RePEc:eee:jotrge:v:66:y:2018:i:c:p:116-124
    DOI: 10.1016/j.jtrangeo.2017.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317303460
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2017.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kamruzzaman, Md. & Shatu, Farjana Mostafiz & Hine, Julian & Turrell, Gavin, 2015. "Commuting mode choice in transit oriented development: Disentangling the effects of competitive neighbourhoods, travel attitudes, and self-selection," Transport Policy, Elsevier, vol. 42(C), pages 187-196.
    2. Reusser, Dominik E. & Loukopoulos, Peter & Stauffacher, Michael & Scholz, Roland W., 2008. "Classifying railway stations for sustainable transitions – balancing node and place functions," Journal of Transport Geography, Elsevier, vol. 16(3), pages 191-202.
    3. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    4. De Vos, Jonas & Derudder, Ben & Van Acker, Veronique & Witlox, Frank, 2012. "Reducing car use: changing attitudes or relocating? The influence of residential dissonance on travel behavior," Journal of Transport Geography, Elsevier, vol. 22(C), pages 1-9.
    5. Cervero, Robert & Day, Jennifer, 2008. "Suburbanization and transit-oriented development in China," Transport Policy, Elsevier, vol. 15(5), pages 315-323, September.
    6. Farjana Mostafiz Shatu & Md. Kamruzzaman & Kaveh Deilami, 2014. "Did Brisbane Grow Smartly? Drivers of City Growth 1991-2001 and Lessons for Current Policies," SAGE Open, , vol. 4(4), pages 21582440145, October.
    7. Tim Schwanen & Patricia L Mokhtarian, 2004. "The Extent and Determinants of Dissonance between Actual and Preferred Residential Neighborhood Type," Environment and Planning B, , vol. 31(5), pages 759-784, October.
    8. Bowes, David R. & Ihlanfeldt, Keith R., 2001. "Identifying the Impacts of Rail Transit Stations on Residential Property Values," Journal of Urban Economics, Elsevier, vol. 50(1), pages 1-25, July.
    9. Kamruzzaman, Md. & Hine, Julian, 2013. "Self-proxy agreement and weekly school travel behaviour in a sectarian divided society," Journal of Transport Geography, Elsevier, vol. 29(C), pages 74-85.
    10. Kay, Andrew I. & Noland, Robert B. & DiPetrillo, Stephanie, 2014. "Residential property valuations near transit stations with transit-oriented development," Journal of Transport Geography, Elsevier, vol. 39(C), pages 131-140.
    11. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Classifying railway stations for strategic transport and land use planning: Context matters!," Journal of Transport Geography, Elsevier, vol. 19(4), pages 670-679.
    12. Nasri, Arefeh & Zhang, Lei, 2014. "The analysis of transit-oriented development (TOD) in Washington, D.C. and Baltimore metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 172-179.
    13. A. Lemonsu & Vincent Viguie & M. Daniel & V. Masson, 2015. "Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France)," Post-Print hal-01695088, HAL.
    14. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    15. Ashantha Goonetilleke & Tan Yigitcanlar & Godwin A. Ayoko & Prasanna Egodawatta, 2014. "Sustainable Urban Water Environment," Books, Edward Elgar Publishing, number 14894.
    16. Kamruzzaman, Md. & Wood, Lisa & Hine, Julian & Currie, Graham & Giles-Corti, Billie & Turrell, Gavin, 2014. "Patterns of social capital associated with transit oriented development," Journal of Transport Geography, Elsevier, vol. 35(C), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shatu, Farjana & Yigitcanlar, Tan, 2018. "Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH," Journal of Transport Geography, Elsevier, vol. 70(C), pages 148-160.
    2. Rita Yi Man Li & Ka Yi Cheng & Muhammad Shoaib, 2018. "Walled Buildings, Sustainability, and Housing Prices: An Artificial Neural Network Approach," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    3. Mortoja, Md. Golam & Yigitcanlar, Tan & Mayere, Severine, 2020. "What is the most suitable methodological approach to demarcate peri-urban areas? A systematic review of the literature," Land Use Policy, Elsevier, vol. 95(C).
    4. Chia-Ho Wu & Chih-Hong Huang & Yeou-Fong Li & Wei-Hao Lee & Ta-Wui Cheng, 2020. "Utilization of Basic Oxygen Furnace Slag in Geopolymeric Coating for Passive Radiative Cooling Application," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    5. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    6. Amirafshar Vaeztavakoli & Azadeh Lak & Tan Yigitcanlar, 2018. "Blue and Green Spaces as Therapeutic Landscapes: Health Effects of Urban Water Canal Areas of Isfahan," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    7. Yigitcanlar, Tan & Kamruzzaman, Md., 2018. "Does smart city policy lead to sustainability of cities?," Land Use Policy, Elsevier, vol. 73(C), pages 49-58.
    8. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    9. Halpern, Nigel & Mwesiumo, Deodat & Budd, Thomas & Suau-Sanchez, Pere & Bråthen, Svein, 2021. "Segmentation of passenger preferences for using digital technologies at airports in Norway," Journal of Air Transport Management, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    2. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    3. Kamruzzaman, Md. & Shatu, Farjana Mostafiz & Hine, Julian & Turrell, Gavin, 2015. "Commuting mode choice in transit oriented development: Disentangling the effects of competitive neighbourhoods, travel attitudes, and self-selection," Transport Policy, Elsevier, vol. 42(C), pages 187-196.
    4. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    5. De Vos, Jonas & Van Acker, Veronique & Witlox, Frank, 2014. "The influence of attitudes on Transit-Oriented Development: An explorative analysis," Transport Policy, Elsevier, vol. 35(C), pages 326-329.
    6. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    7. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    8. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    9. Lyu, Guowei & Bertolini, Luca & Pfeffer, Karin, 2016. "Developing a TOD typology for Beijing metro station areas," Journal of Transport Geography, Elsevier, vol. 55(C), pages 40-50.
    10. Kamruzzaman, Md. & Wood, Lisa & Hine, Julian & Currie, Graham & Giles-Corti, Billie & Turrell, Gavin, 2014. "Patterns of social capital associated with transit oriented development," Journal of Transport Geography, Elsevier, vol. 35(C), pages 144-155.
    11. Li, Jianling, 2018. "Residential and transit decisions: Insights from focus groups of neighborhoods around transit stations," Transport Policy, Elsevier, vol. 63(C), pages 1-9.
    12. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    13. Singh, Yamini Jain & Lukman, Azhari & Flacke, Johannes & Zuidgeest, Mark & Van Maarseveen, M.F.A.M., 2017. "Measuring TOD around transit nodes - Towards TOD policy," Transport Policy, Elsevier, vol. 56(C), pages 96-111.
    14. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    15. Chen, Zhiheng & Li, Peiran & Jin, YanXiu & Bharule, Shreyas & Jia, Ning & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke & Zhang, Haoran, 2023. "Using mobile phone big data to identify inequity of aging groups in transit-oriented development station usage: A case of Tokyo," Transport Policy, Elsevier, vol. 132(C), pages 65-75.
    16. Yingqun Zhang & Rui Song & Rob van Nes & Shiwei He & Weichuan Yin, 2019. "Identifying Urban Structure Based on Transit-Oriented Development," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    17. Shatu, Farjana & Yigitcanlar, Tan, 2018. "Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH," Journal of Transport Geography, Elsevier, vol. 70(C), pages 148-160.
    18. Akbari, Saidal & Mahmoud, Mohamed Salah & Shalaby, Amer & Habib, Khandker M. Nurul, 2018. "Empirical models of transit demand with walk access/egress for planning transit oriented developments around commuter rail stations in the Greater Toronto and Hamilton Area," Journal of Transport Geography, Elsevier, vol. 68(C), pages 1-8.
    19. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    20. Ettema, Dick & Nieuwenhuis, Roy, 2017. "Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?," Journal of Transport Geography, Elsevier, vol. 59(C), pages 146-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:66:y:2018:i:c:p:116-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.