IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v41y2013i2p390-396.html
   My bibliography  Save this article

Decision support for lead time and demand variability reduction

Author

Listed:
  • Fang, Xin
  • Zhang, Cheng
  • Robb, David J.
  • Blackburn, Joseph D.

Abstract

Companies undertaking operations improvement in supply chains face many alternatives. This work seeks to assist practitioners to prioritize improvement actions by developing analytical expressions for the marginal values of three parameters – (i) lead time mean, (ii) lead time variance, and (iii) demand variance – which measure the marginal cost of an incremental change in a parameter. The relative effectiveness of reducing lead time mean versus lead time variance is captured by the ratio of the marginal value of lead time mean to that of lead time variance. We find that this ratio strongly depends on whether the lead time mean and variance are independent or correlated. We illustrate the application of the results with a numerical example from an industrial setting. The insights can help managers determine the optimal investment decision to modify demand and supply characteristics in their supply chain, e.g., by switching suppliers, factory layout, or investing in information systems.

Suggested Citation

  • Fang, Xin & Zhang, Cheng & Robb, David J. & Blackburn, Joseph D., 2013. "Decision support for lead time and demand variability reduction," Omega, Elsevier, vol. 41(2), pages 390-396.
  • Handle: RePEc:eee:jomega:v:41:y:2013:i:2:p:390-396
    DOI: 10.1016/j.omega.2012.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048312000795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2012.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silver, Edward A. & Bischak, Diane P., 2011. "The exact fill rate in a periodic review base stock system under normally distributed demand," Omega, Elsevier, vol. 39(3), pages 346-349, June.
    2. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    3. Jayashankar M. Swaminathan & Sridhar R. Tayur, 2003. "Models for Supply Chains in E-Business," Management Science, INFORMS, vol. 49(10), pages 1387-1406, October.
    4. Marshall Fisher & Kumar Rajaram & Ananth Raman, 2001. "Optimizing Inventory Replenishment of Retail Fashion Products," Manufacturing & Service Operations Management, INFORMS, vol. 3(3), pages 230-241, November.
    5. Chandra, Charu & Grabis, Janis, 2008. "Inventory management with variable lead-time dependent procurement cost," Omega, Elsevier, vol. 36(5), pages 877-887, October.
    6. Silver, Edward A. & Robb, David J., 2008. "Some insights regarding the optimal reorder period in periodic review inventory systems," International Journal of Production Economics, Elsevier, vol. 112(1), pages 354-366, March.
    7. Gerchak, Yigal & Parlar, Mahmut, 1991. "Investing in reducing lead-time randomness in continuous-review inventory models," Engineering Costs and Production Economics, Elsevier, vol. 21(2), pages 191-197, May.
    8. Sridhar Bashyam & Michael C. Fu, 1998. "Optimization of (s, S) Inventory Systems with Random Lead Times and a Service Level Constraint," Management Science, INFORMS, vol. 44(12-Part-2), pages 243-256, December.
    9. He, Xin James & Kim, Jeon G. & Hayya, Jack C., 2005. "The cost of lead-time variability: The case of the exponential distribution," International Journal of Production Economics, Elsevier, vol. 97(2), pages 130-142, August.
    10. Bookbinder, James H. & Cakanyildirim, Metin, 1999. "Random lead times and expedited orders in (Q,r) inventory systems," European Journal of Operational Research, Elsevier, vol. 115(2), pages 300-313, June.
    11. Wei Shi Lim, 2001. "Producer-Supplier Contracts with Incomplete Information," Management Science, INFORMS, vol. 47(5), pages 709-715, May.
    12. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    13. Hayya, Jack C. & Harrison, Terry P. & He, X. James, 2011. "The impact of stochastic lead time reduction on inventory cost under order crossover," European Journal of Operational Research, Elsevier, vol. 211(2), pages 274-281, June.
    14. Hosoda, Takamichi & Disney, Stephen M., 2012. "A delayed demand supply chain: Incentives for upstream players," Omega, Elsevier, vol. 40(4), pages 478-487.
    15. Garcia, C.A. & Ibeas, A. & Herrera, J. & Vilanova, R., 2012. "Inventory control for the supply chain: An adaptive control approach based on the identification of the lead-time," Omega, Elsevier, vol. 40(3), pages 314-327.
    16. Wu, Jianghua & Zhai, Xin & Huang, Zhimin, 2008. "Incentives for information sharing in duopoly with capacity constraints," Omega, Elsevier, vol. 36(6), pages 963-975, December.
    17. Silver, Edward A., 1992. "Changing the givens in modelling inventory problems: the example of just-in-time systems," International Journal of Production Economics, Elsevier, vol. 26(1-3), pages 347-351, February.
    18. Jing-Sheng Song & Candace A. Yano & Panupol Lerssrisuriya, 2000. "Contract Assembly: Dealing with Combined Supply Lead Time and Demand Quantity Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 2(3), pages 287-296, July.
    19. Paknejad, M. Javad & Nasri, Farrokh & Affisco, John F., 1992. "Lead-time variability reduction in stochastic inventory models," European Journal of Operational Research, Elsevier, vol. 62(3), pages 311-322, November.
    20. Fu, Yonghui & Piplani, Rajesh, 2004. "Supply-side collaboration and its value in supply chains," European Journal of Operational Research, Elsevier, vol. 152(1), pages 281-288, January.
    21. Ryu, Si Wook & Lee, Kyung Keun, 2003. "A stochastic inventory model of dual sourced supply chain with lead-time reduction," International Journal of Production Economics, Elsevier, vol. 81(1), pages 513-524, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaoming, 2023. "A two-level policy for controlling an epidemic and its dynamics," Omega, Elsevier, vol. 115(C).
    2. Hammami, Ramzi & Frein, Yannick & Nouira, Imen & Albana, Abduh-Sayid, 2022. "On the interplay between local lead times, overall lead time, prices, and profits in decentralized supply chains," International Journal of Production Economics, Elsevier, vol. 243(C).
    3. Li, Xiaoming, 2020. "Valuing lead-time and its variance in batch-ordering inventory policies," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    5. Bandaly, Dia & Satir, Ahmet & Shanker, Latha, 2016. "Impact of lead time variability in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 180(C), pages 88-100.
    6. Ding, Yi & Gao, Xing & Huang, Chao & Shu, Jia & Yang, Donghui, 2018. "Service competition in an online duopoly market," Omega, Elsevier, vol. 77(C), pages 58-72.
    7. Belvedere, Valeria & Goodwin, Paul, 2017. "The influence of product involvement and emotion on short-term product demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 652-661.
    8. Williams, Brent D. & Waller, Matthew A. & Ahire, Sanjay & Ferrier, Gary D., 2014. "Predicting retailer orders with POS and order data: The inventory balance effect," European Journal of Operational Research, Elsevier, vol. 232(3), pages 593-600.
    9. Heydari, Jafar & Mahmoodi, Mansour & Taleizadeh, Ata Allah, 2016. "Lead time aggregation: A three-echelon supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 215-233.
    10. Tyworth, John E., 2018. "A note on lead-time paradoxes and a tale of competing prescriptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 139-150.
    11. Tyworth, John E. & Saldanha, John, 2014. "The lead-time reliability paradox and inconsistent value-of-reliability estimates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 76-85.
    12. Juan Manuel Izar Landeta & Carmen Berenice Ynzunza Cortés & Orlando Guarneros García, 2016. "Lead time demand variability, safety stock and the inventory cost," Contaduría y Administración, Accounting and Management, vol. 61(3), pages 499-513, Julio-Sep.
    13. Pedro Domingos Antoniolli, 2016. "Information Technology Framework for Pharmaceutical Supply Chain Demand Management: a Brazilian Case Study," Brazilian Business Review, Fucape Business School, vol. 13(2), pages 27-55, March.
    14. Sarkar, Biswajit & Kar, Sumi & Basu, Kajla & Seo, Yong Won, 2023. "Is the online-offline buy-online-pickup-in-store retail strategy best among other product delivery strategies under variable lead time?," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    2. İsmail Bakal & Nesim Erkip & Refik Güllü, 2011. "Value of supplier’s capacity information in a two-echelon supply chain," Annals of Operations Research, Springer, vol. 191(1), pages 115-135, November.
    3. Kim, Soo Wook & Park, Sangwook, 2008. "Development of a three-echelon SC model to optimize coordination costs," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1044-1061, February.
    4. Caridi, Maria & Crippa, Luca & Perego, Alessandro & Sianesi, Andrea & Tumino, Angela, 2010. "Do virtuality and complexity affect supply chain visibility?," International Journal of Production Economics, Elsevier, vol. 127(2), pages 372-383, October.
    5. Prajogo, Daniel & Olhager, Jan, 2012. "Supply chain integration and performance: The effects of long-term relationships, information technology and sharing, and logistics integration," International Journal of Production Economics, Elsevier, vol. 135(1), pages 514-522.
    6. Kim, Taebok & Glock, Christoph H. & Kwon, Yongjang, 2014. "A closed-loop supply chain for deteriorating products under stochastic container return times," Omega, Elsevier, vol. 43(C), pages 30-40.
    7. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect"," Management Science, INFORMS, vol. 50(12_supple), pages 1887-1893, December.
    8. Hosoda, Takamichi & Disney, Stephen M., 2012. "A delayed demand supply chain: Incentives for upstream players," Omega, Elsevier, vol. 40(4), pages 478-487.
    9. Li, Xiuhui & Wang, Qinan, 2007. "Coordination mechanisms of supply chain systems," European Journal of Operational Research, Elsevier, vol. 179(1), pages 1-16, May.
    10. Hoberg, Kai & Thonemann, Ulrich W., 2014. "Modeling and analyzing information delays in supply chains using transfer functions," International Journal of Production Economics, Elsevier, vol. 156(C), pages 132-145.
    11. Wang, Xun & Disney, Stephen M. & Wang, Jing, 2014. "Exploring the oscillatory dynamics of a forbidden returns inventory system," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 3-12.
    12. Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
    13. Li, Tian & Zhang, Hongtao, 2015. "Information sharing in a supply chain with a make-to-stock manufacturer," Omega, Elsevier, vol. 50(C), pages 115-125.
    14. Chaharsooghi, S. Kamal & Heydari, Jafar, 2010. "LT variance or LT mean reduction in supply chain management: Which one has a higher impact on SC performance?," International Journal of Production Economics, Elsevier, vol. 124(2), pages 475-481, April.
    15. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    16. Zhang, Cheng & Tan, Gek-Woo & Robb, David J. & Zheng, Xin, 2006. "Sharing shipment quantity information in the supply chain," Omega, Elsevier, vol. 34(5), pages 427-438, October.
    17. Babai, M. Zied & Dai, Yong & Li, Qinyun & Syntetos, Aris & Wang, Xun, 2022. "Forecasting of lead-time demand variance: Implications for safety stock calculations," European Journal of Operational Research, Elsevier, vol. 296(3), pages 846-861.
    18. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "OVAP: A strategy to implement partial information sharing among supply chain retailers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 122-136.
    19. Hwarng, H. Brian & Xie, Na, 2008. "Understanding supply chain dynamics: A chaos perspective," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1163-1178, February.
    20. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:41:y:2013:i:2:p:390-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.