IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v29y2023ics2405851322000617.html
   My bibliography  Save this article

Evolution of the information transmission between Chinese and international oil markets: A quantile-based framework

Author

Listed:
  • Duan, Kun
  • Ren, Xiaohang
  • Wen, Fenghua
  • Chen, Jinyu

Abstract

This paper investigates the evolution of the information transmission between Chinese and international crude oil markets from the perspective of return and volatility spillovers through a quantile-based framework. Using a causality-in-quantiles test, we find the asymmetric and nonlinear transmission featured by uni-directional spillovers from international WTI to China’s Shanghai oil markets in different conditions of the two markets, but not the other way around. Moreover, the degree of the information transmission is estimated using a Quantile-on-Quantile approach. Through this, marginal impacts of return and volatility of the WTI oil benchmark on that of the Shanghai oil market in a full-distributional environment are respectively gauged. We find that both return and volatility spillovers demonstrate an overall positive and heightening intensity with increases in the corresponding quantiles of the Shanghai oil market. The spillovers would be weakened by extreme events in the China domestic market, suggesting an important role of internal innovations in governing the Chinese and international oil market relationship. Overall, our results do not support the ‘one great pool’ hypothesis in the global oil market, and possess important implications. A battery of robustness checks reassures our findings.

Suggested Citation

  • Duan, Kun & Ren, Xiaohang & Wen, Fenghua & Chen, Jinyu, 2023. "Evolution of the information transmission between Chinese and international oil markets: A quantile-based framework," Journal of Commodity Markets, Elsevier, vol. 29(C).
  • Handle: RePEc:eee:jocoma:v:29:y:2023:i:c:s2405851322000617
    DOI: 10.1016/j.jcomm.2022.100304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851322000617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2022.100304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pukthuanthong, Kuntara & Roll, Richard, 2009. "Global market integration: An alternative measure and its application," Journal of Financial Economics, Elsevier, vol. 94(2), pages 214-232, November.
    2. Wang, Xiong & Li, Jingyao & Ren, Xiaohang, 2022. "Asymmetric causality of economic policy uncertainty and oil volatility index on time-varying nexus of the clean energy, carbon and green bond," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Andrew N. Kleit, 2001. "Are Regional Oil Markets Growing Closer Together?: An Arbitrage Cost Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-15.
    4. Li, Raymond & Leung, Guy C.K., 2011. "The integration of China into the world crude oil market since 1998," Energy Policy, Elsevier, vol. 39(9), pages 5159-5166, September.
    5. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    6. Ren, Xiaohang & liu, Ziqing & Jin, Chenglu & Lin, Ruya, 2023. "Oil price uncertainty and enterprise total factor productivity: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 201-218.
    7. Bouri, Elie & Kachacha, Imad & Roubaud, David, 2020. "Oil market conditions and sovereign risk in MENA oil exporters and importers," Energy Policy, Elsevier, vol. 137(C).
    8. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
    9. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    10. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    11. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    12. Mehmet Balcilar & Stelios Bekiros & Rangan Gupta, 2017. "The role of news-based uncertainty indices in predicting oil markets: a hybrid nonparametric quantile causality method," Empirical Economics, Springer, vol. 53(3), pages 879-889, November.
    13. Yang, Chen & Lv, Fei & Fang, Libing & Shang, Xingxing, 2020. "The pricing efficiency of crude oil futures in the Shanghai International Exchange," Finance Research Letters, Elsevier, vol. 36(C).
    14. Du, Limin & Yanan, He & Wei, Chu, 2010. "The relationship between oil price shocks and China's macro-economy: An empirical analysis," Energy Policy, Elsevier, vol. 38(8), pages 4142-4151, August.
    15. Khalifa, Ahmed A.A. & Hammoudeh, Shawkat & Otranto, Edoardo, 2014. "Patterns of volatility transmissions within regime switching across GCC and global markets," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 512-524.
    16. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    17. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    18. Xiaohang Ren & Yue Dou & Kangyin Dong & Yiying Li, 2022. "Information spillover and market connectedness: multi-scale quantile-on-quantile analysis of the crude oil and carbon markets," Applied Economics, Taylor & Francis Journals, vol. 54(38), pages 4465-4485, August.
    19. Jia, Xiaoliang & An, Haizhong & Sun, Xiaoqi & Huang, Xuan & Wang, Lijun, 2017. "Evolution of world crude oil market integration and diversification: A wavelet-based complex network perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1788-1798.
    20. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    21. Ren, Xiaohang & Li, Jingyao & He, Feng & Lucey, Brian, 2023. "Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    22. Wu, Gang & Zhang, Yue-Jun, 2014. "Does China factor matter? An econometric analysis of international crude oil prices," Energy Policy, Elsevier, vol. 72(C), pages 78-86.
    23. Galay, Gregory, 2019. "Are crude oil markets cointegrated? Testing the co-movement of weekly crude oil spot prices," Journal of Commodity Markets, Elsevier, vol. 16(C).
    24. Ji, Qiang & Fan, Ying, 2016. "Evolution of the world crude oil market integration: A graph theory analysis," Energy Economics, Elsevier, vol. 53(C), pages 90-100.
    25. Ji, Qiang & Zhang, Dayong, 2019. "China’s crude oil futures: Introduction and some stylized facts," Finance Research Letters, Elsevier, vol. 28(C), pages 376-380.
    26. Zhang, Bing, 2019. "Are Chinese and international oil markets integrated?," International Review of Economics & Finance, Elsevier, vol. 62(C), pages 41-52.
    27. Li, Qiming & Cheng, Ke & Yang, Xiaoguang, 2017. "Response pattern of stock returns to international oil price shocks: From the perspective of China’s oil industrial chain," Applied Energy, Elsevier, vol. 185(P2), pages 1821-1831.
    28. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    29. Sophia Zhengzi Li & Hao Wang & Hua Zhao, 2016. "Jump Tail Dependence in the Chinese Stock Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(10), pages 2379-2396, October.
    30. Lyu, Yongjian & Tuo, Siwei & Wei, Yu & Yang, Mo, 2021. "Time-varying effects of global economic policy uncertainty shocks on crude oil price volatility:New evidence," Resources Policy, Elsevier, vol. 70(C).
    31. Shawkat M. Hammoudeh & Bradley T. Ewing & Mark A. Thompson, 2008. "Threshold Cointegration Analysis of Crude Oil Benchmarks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 79-96.
    32. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    33. Fattouh, Bassam, 2010. "The dynamics of crude oil price differentials," Energy Economics, Elsevier, vol. 32(2), pages 334-342, March.
    34. Naeem, Muhammad Abubakr & Pham, Linh & Senthilkumar, Arunachalam & Karim, Sitara, 2022. "Oil shocks and BRIC markets: Evidence from extreme quantile approach," Energy Economics, Elsevier, vol. 108(C).
    35. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2013. "Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries," Journal of Comparative Economics, Elsevier, vol. 41(4), pages 1220-1239.
    36. Kuck, Konstantin & Schweikert, Karsten, 2017. "A Markov regime-switching model of crude oil market integration," Journal of Commodity Markets, Elsevier, vol. 6(C), pages 16-31.
    37. S. Gurcan Gulen, 1997. "Regionalization in the World Crude Oil Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 109-126.
    38. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    39. M. A. Adelman, 1984. "International Oil Agreements," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-10.
    40. Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
    41. Shah, Adil Ahmad & Paul, Manas & Bhanja, Niyati & Dar, Arif Billah, 2021. "Dynamics of connectedness across crude oil, precious metals and exchange rate: Evidence from time and frequency domains," Resources Policy, Elsevier, vol. 73(C).
    42. Zhang, Bing & Wang, Peijie, 2014. "Return and volatility spillovers between china and world oil markets," Economic Modelling, Elsevier, vol. 42(C), pages 413-420.
    43. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    44. Weiner, R.J., 1991. "Is the World Oil Market "One Great Pool?"," Papers 9120, Laval - Recherche en Energie.
    45. Davis, Richard A. & Mikosch, Thomas & Cribben, Ivor, 2012. "Towards estimating extremal serial dependence via the bootstrapped extremogram," Journal of Econometrics, Elsevier, vol. 170(1), pages 142-152.
    46. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    47. Robert J. Weiner, 1991. "Is the World Oil Market "One Great Pool"?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 95-108.
    48. S. Gurcan Gulen, 1999. "Regionalization in the World Crude Oil Market: Further Evidence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 125-139.
    49. Ren, Xiaohang & Wang, Rui & Duan, Kun & Chen, Jinyu, 2022. "Dynamics of the sheltering role of Bitcoin against crude oil market crash with varying severity of the COVID-19: A comparison with gold," Research in International Business and Finance, Elsevier, vol. 62(C).
    50. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    51. Khan, Khalid & Su, Chi-Wei & Umar, Muhammad & Yue, Xiao-Guang, 2021. "Do crude oil price bubbles occur?," Resources Policy, Elsevier, vol. 71(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    2. Wei, Ping & Qi, Yinshu & Ren, Xiaohang & Gozgor, Giray, 2023. "The role of the COVID-19 pandemic in time-frequency connectedness between oil market shocks and green bond markets: Evidence from the wavelet-based quantile approaches," Energy Economics, Elsevier, vol. 121(C).
    3. Duan, Xiaoping & Xiao, Ya & Ren, Xiaohang & Taghizadeh-Hesary, Farhad & Duan, Kun, 2023. "Dynamic spillover between traditional energy markets and emerging green markets: Implications for sustainable development," Resources Policy, Elsevier, vol. 82(C).
    4. Zhuoqi Teng & Renhong Wu & Yugang He & Anibal Coronel, 2023. "Swings in Crude Oil Valuations: Analyzing Their Bearing on China’s Stock Market Returns amid the COVID-19 Pandemic Upheaval," Discrete Dynamics in Nature and Society, Hindawi, vol. 2023, pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiasha Fu & Hui Qiao, 2022. "The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 341-376, December.
    2. Lee, Chien-Chiang & Zhou, Hegang & Xu, Chao & Zhang, Xiaoming, 2023. "Dynamic spillover effects among international crude oil markets from the time-frequency perspective," Resources Policy, Elsevier, vol. 80(C).
    3. Liu, Li & Chen, Ching-Cheng & Wan, Jieqiu, 2013. "Is world oil market “one great pool”?: An example from China's and international oil markets," Economic Modelling, Elsevier, vol. 35(C), pages 364-373.
    4. Zhang, Qi & Di, Peng & Farnoosh, Arash, 2021. "Study on the impacts of Shanghai crude oil futures on global oil market and oil industry based on VECM and DAG models," Energy, Elsevier, vol. 223(C).
    5. Cui, Jinxin & Maghyereh, Aktham, 2023. "Time-frequency dependence and connectedness among global oil markets: Fresh evidence from higher-order moment perspective," Journal of Commodity Markets, Elsevier, vol. 30(C).
    6. Yuksel Haliloglu, Ebru & Sahin, Serkan & Berument, M. Hakan, 2021. "Brent–Dubai oil spread: Basic drivers," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 492-505.
    7. Niyati Bhanja & Samia Nasreen & Arif Billah Dar & Aviral Kumar Tiwari, 2022. "Connectedness in International Crude Oil Markets," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 227-262, January.
    8. Bravo Caro, José Manuel & Golpe, Antonio A. & Iglesias, Jesús & Vides, José Carlos, 2020. "A new way of measuring the WTI – Brent spread. Globalization, shock persistence and common trends," Energy Economics, Elsevier, vol. 85(C).
    9. Atanu Ghoshray and Tatiana Trifonova, 2014. "Dynamic Adjustment of Crude Oil Price Spreads," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
    11. Niyati Bhanja & Arif Billah Dar & Aviral Kumar Tiwari, 2018. "Do Global Crude Oil Markets Behave as One Great Pool? A Cyclical Analysis," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 219-241, November.
    12. Kaufmann, Robert K. & Banerjee, Shayan, 2014. "A unified world oil market: Regions in physical, economic, geographic, and political space," Energy Policy, Elsevier, vol. 74(C), pages 235-242.
    13. Jia, Xiaoliang & An, Haizhong & Sun, Xiaoqi & Huang, Xuan & Wang, Lijun, 2017. "Evolution of world crude oil market integration and diversification: A wavelet-based complex network perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1788-1798.
    14. Ayman Omar, 2015. "West Texas Intermediate and Brent Spread during Organization of the Petroleum Exporting Countries Supply Disruptions," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 693-703.
    15. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    16. Bertrand Candelon & Marc Joëts & Sessi Tokpavi, 2012. "Testing for crude oil markets globalization during extreme price movements," Post-Print hal-01411687, HAL.
    17. Ioannis Chatziantoniou & David Gabauer & Rangan Gupta, 2021. "Integration and Risk Transmission in the Market for Crude Oil: A Time-Varying Parameter Frequency Connectedness Approach," Working Papers 202147, University of Pretoria, Department of Economics.
    18. Jia, Xiaoliang & An, Haizhong & Fang, Wei & Sun, Xiaoqi & Huang, Xuan, 2015. "How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective," Energy Economics, Elsevier, vol. 49(C), pages 588-598.
    19. Neil A. Wilmot, 2013. "Cointegration in the Oil Market among Regional Blends," International Journal of Energy Economics and Policy, Econjournals, vol. 3(4), pages 424-433.
    20. Yonghong Jiang & Gengyu Tian & Bin Mo, 2020. "Spillover and quantile linkage between oil price shocks and stock returns: new evidence from G7 countries," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:29:y:2023:i:c:s2405851322000617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.