IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v88y2018icp1-17.html
   My bibliography  Save this article

Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants

Author

Listed:
  • Zhang, Peng
  • Deschenes, Olivier
  • Meng, Kyle
  • Zhang, Junjie

Abstract

This paper uses detailed production data from a half million Chinese manufacturing plants over 1998–2007 to estimate the effects of temperature on firm-level total factor productivity (TFP), factor inputs, and output. We detect an inverted U-shaped relationship between temperature and TFP and show that it primarily drives the temperature-output effect. Both labor- and capital- intensive firms exhibit sensitivity to high temperatures. By mid 21st century, if no additional adaptation were to occur, we project that climate change will reduce Chinese manufacturing output annually by 12%, equivalent to a loss of $39.5 billion in 2007 dollars. This implies substantial local and global economic consequences as the Chinese manufacturing sector produces 32% of national GDP and supplies 12% of global exports.

Suggested Citation

  • Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
  • Handle: RePEc:eee:jeeman:v:88:y:2018:i:c:p:1-17
    DOI: 10.1016/j.jeem.2017.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069617304588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2017.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    2. Nina Pavcnik, 2002. "Trade Liberalization, Exit, and Productivity Improvements: Evidence from Chilean Plants," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(1), pages 245-276.
    3. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    4. Jonathan Colmer, 2021. "Temperature, Labor Reallocation, and Industrial Production: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 13(4), pages 101-124, October.
    5. E. Somanathan & Rohini Somanathan & Anant Sudarshan & Meenu Tewari, 2021. "The Impact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1797-1827.
    6. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    7. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    8. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    9. Geoffrey Heal & Jisung Park, 2013. "Feeling the Heat: Temperature, Physiology & the Wealth of Nations," NBER Working Papers 19725, National Bureau of Economic Research, Inc.
    10. Brandt, Loren & Van Biesebroeck, Johannes & Zhang, Yifan, 2012. "Creative accounting or creative destruction? Firm-level productivity growth in Chinese manufacturing," Journal of Development Economics, Elsevier, vol. 97(2), pages 339-351.
    11. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    12. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    13. Paul H. Malatesta & Kathryn L. DeWenter, 2001. "State-Owned and Privately Owned Firms: An Empirical Analysis of Profitability, Leverage, and Labor Intensity," American Economic Review, American Economic Association, vol. 91(1), pages 320-334, March.
    14. Beata Smarzynska Javorcik, 2004. "Does Foreign Direct Investment Increase the Productivity of Domestic Firms? In Search of Spillovers Through Backward Linkages," American Economic Review, American Economic Association, vol. 94(3), pages 605-627, June.
    15. Hongbin Cai & Qiao Liu, 2009. "Competition and Corporate Tax Avoidance: Evidence from Chinese Industrial Firms," Economic Journal, Royal Economic Society, vol. 119(537), pages 764-795, April.
    16. Mary Amiti & Jozef Konings, 2007. "Trade Liberalization, Intermediate Inputs, and Productivity: Evidence from Indonesia," American Economic Review, American Economic Association, vol. 97(5), pages 1611-1638, December.
    17. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    18. Ghanem, Dalia & Zhang, Junjie, 2014. "‘Effortless Perfection:’ Do Chinese cities manipulate air pollution data?," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 203-225.
    19. Joshua Graff Zivin & Matthew Neidell, 2012. "The Impact of Pollution on Worker Productivity," American Economic Review, American Economic Association, vol. 102(7), pages 3652-3673, December.
    20. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    21. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    22. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    23. Johannes Van Biesebroeck, 2007. "Robustness Of Productivity Estimates," Journal of Industrial Economics, Wiley Blackwell, vol. 55(3), pages 529-569, September.
    24. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    25. Achyuta Adhvaryu & Namrata Kala & Anant Nyshadham, 2020. "The Light and the Heat: Productivity Co-Benefits of Energy-Saving Technology," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 779-792, October.
    26. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    27. Philippe Aghion & Steven Durlauf (ed.), 2005. "Handbook of Economic Growth," Handbook of Economic Growth, Elsevier, edition 1, volume 1, number 1.
    28. Marshall Burke & John Dykema & David B. Lobell & Edward Miguel & Shanker Satyanath, 2015. "Incorporating Climate Uncertainty into Estimates of Climate Change Impacts," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 461-471, May.
    29. Tatyana Deryugina & Solomon M. Hsiang, 2014. "Does the Environment Still Matter? Daily Temperature and Income in the United States," NBER Working Papers 20750, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    2. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    3. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    4. Song, Malin & Wang, Jianlin & Zhao, Jiajia, 2023. "Effects of rising and extreme temperatures on production factor efficiency: Evidence from China's cities," International Journal of Production Economics, Elsevier, vol. 260(C).
    5. Fu, Shihe & Viard, V. Brian & Zhang, Peng, 2022. "Trans-boundary air pollution spillovers: Physical transport and economic costs by distance," Journal of Development Economics, Elsevier, vol. 155(C).
    6. Chengzheng Li & Zheng Pan, 2021. "How do extremely high temperatures affect labor market performance? Evidence from rural China," Empirical Economics, Springer, vol. 61(4), pages 2265-2291, October.
    7. Geoffrey Heal & Jisung Park, 2016. "Editor's Choice Reflections—Temperature Stress and the Direct Impact of Climate Change: A Review of an Emerging Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 347-362.
    8. García-León, David, 2015. "Weather and Income: Lessons from the Main European Regions," Climate Change and Sustainable Development 202979, Fondazione Eni Enrico Mattei (FEEM).
    9. Li, Chengzheng & Cong, Jiajia & Gu, Haiying & Zhang, Peng, 2021. "The non-linear effect of daily weather on economic performance: Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    10. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    11. Cai, Xiqian & Lu, Yi & Wang, Jin, 2018. "The impact of temperature on manufacturing worker productivity: Evidence from personnel data," Journal of Comparative Economics, Elsevier, vol. 46(4), pages 889-905.
    12. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    13. Geoffrey Heal & Jisung Park, 2015. "Goldilocks Economies? Temperature Stress and the Direct Impacts of Climate Change," NBER Working Papers 21119, National Bureau of Economic Research, Inc.
    14. Heyes, Anthony & Saberian, Soodeh, 2022. "Hot Days, the ability to Work and climate resilience: Evidence from a representative sample of 42,152 Indian households," Journal of Development Economics, Elsevier, vol. 155(C).
    15. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    16. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    17. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    18. Solomon Hsiang & Paulina Oliva & Reed Walker, 2019. "The Distribution of Environmental Damages," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 13(1), pages 83-103.
    19. Matteo Picchio & Jan van Ours, 2023. "The impact of high temperatures on performance in work-related activities," Tinbergen Institute Discussion Papers 23-052/V, Tinbergen Institute.
    20. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).

    More about this item

    Keywords

    Climate change; Productivity; Manufacturing; China;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:88:y:2018:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.