IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v140y2022ics0378426622000450.html
   My bibliography  Save this article

A stochastic programming model for dynamic portfolio management with financial derivatives

Author

Listed:
  • Barro, Diana
  • Consigli, Giorgio
  • Varun, Vivek

Abstract

Stochastic optimization models have been extensively applied to financial portfolios and have proven their effectiveness in asset and asset-liability management. Occasionally, however, they have been applied to dynamic portfolio problems including not only assets traded in secondary markets but also derivative contracts such as options or futures with their dedicated payoff functions. Such extension allows the construction of asymmetric payoffs for hedging or speculative purposes but also leads to several mathematical issues. Derivatives-based nonlinear portfolios in a discrete multistage stochastic programming (MSP) framework can be potentially very beneficial to shape dynamically a portfolio return distribution and attain superior performance. In this article we present a portfolio model with equity options, which extends significantly previous efforts in this area, and analyse the potential of such extension from a modeling and methodological viewpoints. We consider an asset universe and model portfolio set-up including equity, bonds, money market, a volatility-based exchange-traded-fund (ETF) and over-the-counter (OTC) option contracts on the equity. Relying on this market structure we formulate and analyse, to the best of our knowledge, for the first time, a comprehensive set of optimal option strategies in a discrete framework, including canonical protective puts, covered calls and straddles, as well as more advanced combined strategies based on equity options and the volatility index. The problem formulation relies on a data-driven scenario generation method for asset returns and option prices consistent with arbitrage-free conditions and incomplete market assumptions. The joint inclusion of option contracts and the VIX as asset class in a dynamic portfolio problem extends previous efforts in the domain of volatility-driven optimal policies. By introducing an optimal trade-off problem based on expected wealth and Conditional Value-at-Risk (CVaR), we formulate the problem as a stochastic linear program and present an extended set of numerical results across different market phases, to discuss the interplay among asset classes and options, relevant to financial engineers and fund managers. We find that options’ portfolios and trading in options strengthen an effective tail risk control, and help shaping portfolios returns’ distributions, consistently with an investor’s risk attitude. Furthermore the introduction of a volatility index in the asset universe, jointly with equity options, leads to superior risk-adjusted returns, both in- and out-of-sample, as shown in the final case-study.

Suggested Citation

  • Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:jbfina:v:140:y:2022:i:c:s0378426622000450
    DOI: 10.1016/j.jbankfin.2022.106445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426622000450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2022.106445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathias Barkhagen & Jörgen Blomvall, 2016. "Modeling and evaluation of the option book hedging problem using stochastic programming," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 259-273, February.
    2. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    3. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2011. "Optimizing international portfolios with options and forwards," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3188-3201.
    4. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    5. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    6. Andrea Consiglio & Angelo Carollo & Stavros A. Zenios, 2016. "A parsimonious model for generating arbitrage-free scenario trees," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 201-212, February.
    7. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2010. "No-arbitrage conditions, scenario trees, and multi-asset financial optimization," European Journal of Operational Research, Elsevier, vol. 206(3), pages 609-613, November.
    8. Brennan, Michael J & Cao, H Henry, 1996. "Information, Trade, and Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 163-208.
    9. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "Pricing options on scenario trees," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 283-298, February.
    10. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    11. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," European Journal of Operational Research, Elsevier, vol. 101(2), pages 374-392, September.
    12. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    13. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
    14. Michael A. H. Dempster & Igor V. Evstigneev & Klaus R. Schenk-hoppe, 2007. "Volatility-induced financial growth," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 151-160.
    15. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    16. Diana Barro & Elio Canestrelli & Giorgio Consigli, 2019. "Volatility versus downside risk: performance protection in dynamic portfolio strategies," Computational Management Science, Springer, vol. 16(3), pages 433-479, July.
    17. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
    18. Merton, Robert C & Scholes, Myron S & Gladstein, Mathew L, 1978. "The Returns and Risk of Alternative Call Option Portfolio Investment Strategies," The Journal of Business, University of Chicago Press, vol. 51(2), pages 183-242, April.
    19. Blomvall, Jorgen & Lindberg, Per Olov, 2003. "Back-testing the performance of an actively managed option portfolio at the Swedish Stock Market, 1990-1999," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1099-1112, April.
    20. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    21. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    22. David R. Cariño & William T. Ziemba, 1998. "Formulation of the Russell-Yasuda Kasai Financial Planning Model," Operations Research, INFORMS, vol. 46(4), pages 433-449, August.
    23. G. Consigli & M. Dempster, 1998. "Dynamic stochastic programmingfor asset-liability management," Annals of Operations Research, Springer, vol. 81(0), pages 131-162, June.
    24. Consiglio, Andrea & De Giovanni, Domenico, 2008. "Evaluation of insurance products with guarantee in incomplete markets," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 332-342, February.
    25. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    26. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," Serie Research Memoranda 0011, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    27. Jason Wu & Suvrajeet Sen, 2000. "A Stochastic Programming Model for Currency Option Hedging," Annals of Operations Research, Springer, vol. 100(1), pages 227-249, December.
    28. Pflug, Georg C. & Broussev, Nikola, 2009. "Electricity swing options: Behavioral models and pricing," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1041-1050, September.
    29. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    2. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    3. Libo Yin & Liyan Han, 2020. "International Assets Allocation with Risk Management via Multi-Stage Stochastic Programming," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 383-405, February.
    4. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    5. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2010. "No-arbitrage conditions, scenario trees, and multi-asset financial optimization," European Journal of Operational Research, Elsevier, vol. 206(3), pages 609-613, November.
    6. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2014. "No-arbitrage bounds for financial scenarios," European Journal of Operational Research, Elsevier, vol. 236(2), pages 657-663.
    7. Pieter Klaassen, 2002. "Comment on "Generating Scenario Trees for Multistage Decision Problems"," Management Science, INFORMS, vol. 48(11), pages 1512-1516, November.
    8. Weissensteiner, Alex, 2010. "Using the Black-Derman-Toy interest rate model for portfolio optimization," European Journal of Operational Research, Elsevier, vol. 202(1), pages 175-181, April.
    9. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    10. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    11. Zhao, Yonggan & Ziemba, William T., 2008. "Calculating risk neutral probabilities and optimal portfolio policies in a dynamic investment model with downside risk control," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1525-1540, March.
    12. de Lange, Petter E. & Fleten, Stein-Erik & Gaivoronski, Alexei A., 2004. "Modeling financial reinsurance in the casualty insurance business via stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 991-1012, February.
    13. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    14. repec:dau:papers:123456789/5374 is not listed on IDEAS
    15. Mitra, Sovan & Lim, Sungmook & Karathanasopoulos, Andreas, 2019. "Regression based scenario generation: Applications for performance management," Operations Research Perspectives, Elsevier, vol. 6(C).
    16. Evstigneev, Igor V. & Schürger, Klaus & Taksar, Michael I., 2002. "On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria," Bonn Econ Discussion Papers 24/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    17. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    18. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2011. "Optimizing international portfolios with options and forwards," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3188-3201.
    19. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009.
    20. Eckhard Platen & Stefan Tappe, 2020. "The Fundamental Theorem of Asset Pricing for Self-Financing Portfolios," Research Paper Series 411, Quantitative Finance Research Centre, University of Technology, Sydney.
    21. Jos'e Manuel Corcuera, 2021. "The Golden Age of the Mathematical Finance," Papers 2102.06693, arXiv.org, revised Mar 2021.

    More about this item

    Keywords

    Multistage stochastic programming; Option strategies; Equity and volatility risk; Financial engineering; Optimal risk control; Derivatives pricing;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:140:y:2022:i:c:s0378426622000450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.