Advanced Search
MyIDEAS: Login to save this paper or follow this series

Hedging Options under Transaction Costs and Stochastic Volatility

Contents:

Author Info

  • Roy Kouwenberg

    ()
    (Erasmus University Rotterdam)

  • Jacek Gondzio

    ()
    (University of Edinburgh)

  • Ton Vorst

    ()
    (Erasmus University Rotterdam)

Abstract

In this paper, we consider the problem of hedging a contingent claim on a stock under transaction-costs and stochastic volatility. Extensive research during the last two decades has clearly demonstrated that the volatility of most stocks is not constant over time. Writers of over-the-counter stock options should take account of the effects of stochastic volatility while pricing and hedging contracts, as the volatility of the underlying is the crucial factor in estimating the price of options. Pricing methods for options under stochastic volatility processes are widely available, but practical methods for hedging under stochastic volatility are rare. The simple delta-vega hedging scheme adds option contracts to the portfolio in order to neutralize the volatility exposure during a short interval of time. This method requires frequent rebalancing of the portfolio, which could be costly due to the bid-ask spread on traded option contracts. Static hedging aims at replication of the final payoff with a fixed portfolio of traded options. The static hedging approach fails however when the traded claims do not match the maturity and the moneyness of the over-the-counter products. In this paper we use a stochastic optimization approach to construct short term delta-vega hedges that take account of future rebalancing and transaction costs. The size of the stochastic optimization model grows exponentially with the number of trading dates considered. We show that the decomposition method PDCGM combined with the interior point solver HOPDM allows for an efficient implementation of the stochastic optimization model in a parallel computing environment. This integration of high performance computing and state-of-the-art decomposition methods provides the means for solving the stochastic volatility hedging model with multiple portfolio rebalancing dates.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 1999 with number 911.

as in new window
Length:
Date of creation: 01 Mar 1999
Date of revision:
Handle: RePEc:sce:scecf9:911

Contact details of provider:
Postal: CEF99, Boston College, Department of Economics, Chestnut Hill MA 02467 USA
Fax: +1-617-552-2308
Web page: http://fmwww.bc.edu/CEF99/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Rüdiger Frey & Carlos A. Sin, 1999. "Bounds on European Option Prices under Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 97-116.
  2. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  4. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," European Journal of Operational Research, Elsevier, vol. 101(2), pages 374-392, September.
  5. Boyle, Phelim P & Vorst, Ton, 1992. " Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-93, March.
  6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  7. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  8. Edirisinghe, Chanaka & Naik, Vasanttilak & Uppal, Raman, 1993. "Optimal Replication of Options with Transactions Costs and Trading Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(01), pages 117-138, March.
  9. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  10. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
  11. Marco Avellaneda & Antonio ParAS, 1996. "Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(1), pages 21-52.
  12. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-49, December.
  13. Steven L. Heston & Saikat Nandi, 1998. "Preference-free option pricing with path-dependent volatility: A closed-form approach," Working Paper 98-20, Federal Reserve Bank of Atlanta.
  14. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  15. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  16. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," Serie Research Memoranda 0011, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  17. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  18. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
  19. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
  20. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
  21. Hayne E. Leland., 1984. "Option Pricing and Replication with Transactions Costs," Research Program in Finance Working Papers 144, University of California at Berkeley.
  22. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
  23. Steven L. Heston & Saikat Nandi, 1997. "A closed-form GARCH option pricing model," Working Paper 97-9, Federal Reserve Bank of Atlanta.
  24. Peter Carr & Katrina Ellis & Vishal Gupta, 1998. "Static Hedging of Exotic Options," Journal of Finance, American Finance Association, vol. 53(3), pages 1165-1190, 06.
  25. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
  26. Peter Ritchken & Rob Trevor, 1999. "Pricing Options under Generalized GARCH and Stochastic Volatility Processes," Journal of Finance, American Finance Association, vol. 54(1), pages 377-402, 02.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Johannes Siven & Rolf Poulsen, 2009. "Auto-static for the people: risk-minimizing hedges of barrier options," Review of Derivatives Research, Springer, vol. 12(3), pages 193-211, October.
  2. Alet Roux, 2007. "The fundamental theorem of asset pricing under proportional transaction costs," Papers 0710.2758, arXiv.org.
  3. Fahlenbrach, Rudiger & Sandas, Patrik, 2005. "Co-movements of Index Options and Futures Quotes," Working Paper Series 2006-2, Ohio State University, Charles A. Dice Center for Research in Financial Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:911. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.