IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v64y2015icp306-312.html
   My bibliography  Save this article

Expected utility and catastrophic consumption risk

Author

Listed:
  • Ikefuji, Masako
  • Laeven, Roger J.A.
  • Magnus, Jan R.
  • Muris, Chris

Abstract

An expected utility based cost-benefit analysis is, in general, fragile to distributional assumptions. We derive necessary and sufficient conditions on the utility function of consumption in the expected utility model to avoid this. The conditions ensure that expected (marginal) utility of consumption and the expected intertemporal marginal rate of substitution that trades off consumption and self-insurance remain finite, also under heavy-tailed distributional assumptions. Our results are relevant to various fields encountering catastrophic consumption risk in cost-benefit analysis.

Suggested Citation

  • Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2015. "Expected utility and catastrophic consumption risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 306-312.
  • Handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:306-312
    DOI: 10.1016/j.insmatheco.2015.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715001006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chanel, Olivier & Chichilnisky, Graciela, 2013. "Valuing life: Experimental evidence using sensitivity to rare events," Ecological Economics, Elsevier, vol. 85(C), pages 198-205.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Jérôme Foncel & Nicolas Treich, 2005. "Fear of Ruin," Journal of Risk and Uncertainty, Springer, vol. 31(3), pages 289-300, December.
    4. Chichilnisky, Graciela, 2000. "An axiomatic approach to choice under uncertainty with catastrophic risks," Resource and Energy Economics, Elsevier, vol. 22(3), pages 221-231, July.
    5. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    6. Christopher A. Sims, 2001. "Pitfalls of a Minimax Approach to Model Uncertainty," American Economic Review, American Economic Association, vol. 91(2), pages 51-54, May.
    7. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    8. Robert S. Pindyck, 2011. "Fat Tails, Thin Tails, and Climate Change Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 258-274, Summer.
    9. Geweke, John, 2001. "A note on some limitations of CRRA utility," Economics Letters, Elsevier, vol. 71(3), pages 341-345, June.
    10. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    11. Gilboa,Itzhak, 2009. "Theory of Decision under Uncertainty," Cambridge Books, Cambridge University Press, number 9780521517324.
    12. Karp, Larry S., 2009. "Sacrifice, discounting and climate policy : five questions," CUDARE Working Paper Series 1086, University of California at Berkeley, Department of Agricultural and Resource Economics and Policy.
    13. Kenneth Arrow, 2009. "A note on uncertainty and discounting in models of economic growth," Journal of Risk and Uncertainty, Springer, vol. 38(2), pages 87-94, April.
    14. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    15. Laeven, Roger J.A. & Goovaerts, Marc J. & Hoedemakers, Tom, 2005. "Some asymptotic results for sums of dependent random variables, with actuarial applications," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 154-172, October.
    16. William D. Nordhaus, 2009. "An Analysis of the Dismal Theorem," Levine's Working Paper Archive 814577000000000116, David K. Levine.
    17. Karp, Larry S., 2009. "Sacrifice, discounting and climate policy: five questions," CUDARE Working Papers 51612, University of California, Berkeley, Department of Agricultural and Resource Economics.
    18. Peng, Liang, 2001. "Estimating the mean of a heavy tailed distribution," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 255-264, April.
    19. Buchholz, Wolfgang & Schymura, Michael, 2012. "Expected utility theory and the tyranny of catastrophic risks," Ecological Economics, Elsevier, vol. 77(C), pages 234-239.
    20. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    21. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, September.
    22. Kenneth J. Arrow, 1974. "The Use of Unbounded Utility Functions in Expected-Utility Maximization: Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 88(1), pages 136-138.
    23. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    24. Masako Ikefuji & Roger Laeven & Jan Magnus & Chris Muris, 2013. "Pareto utility," Theory and Decision, Springer, vol. 75(1), pages 43-57, July.
    25. Peter C. Fishburn, 1976. "Unbounded Utility Functions in Expected Utility Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 90(1), pages 163-168.
    26. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    27. William D. Nordhaus, 2011. "The Economics of Tail Events with an Application to Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 240-257, Summer.
    28. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    29. Terence M. Ryan, 1974. "The Use of Unbounded Utility Functions in Expected-Utility Maximization: Comment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 88(1), pages 133-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexis Louaas & Pierre Picard, 2014. "Optimal Insurance For Catastrophic Risk: Theory And Application To Nuclear Corporate Liability," Working Papers hal-01097897, HAL.
    2. Alexis Louaas & Pierre Picard, 2021. "Optimal insurance coverage of low-probability catastrophic risks," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 46(1), pages 61-88, March.
    3. Alexis Louaas and Pierre Picard, 2022. "Optimal Nuclear Liability Insurance," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Grunewald, Nicole & Klasen, Stephan & Martínez-Zarzoso, Inmaculada & Muris, Chris, 2017. "The Trade-off Between Income Inequality and Carbon Dioxide Emissions," Ecological Economics, Elsevier, vol. 142(C), pages 249-256.
    5. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    6. Menna Hassan & Nourhan Sakr & Arthur Charpentier, 2022. "Government Intervention in Catastrophe Insurance Markets: A Reinforcement Learning Approach," Papers 2207.01010, arXiv.org.
    7. Andrea Rampa, 2020. "Climate change, catastrophes and Dismal Theorem: a critical review [Klimawandel, Katastrophen und das „Dismal Theorem“: eine kritische Überprüfung]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 40(2), pages 113-136, October.
    8. Clark, Beth & Stewart, Gavin B. & Panzone, Luca A. & Kyriazakis, Ilias & Frewer, Lynn J., 2017. "Citizens, consumers and farm animal welfare: A meta-analysis of willingness-to-pay studies," Food Policy, Elsevier, vol. 68(C), pages 112-127.
    9. Strulik, Holger, 2019. "I shouldn’t eat this donut: Self-control, body weight, and health in a life cycle model," The Journal of the Economics of Ageing, Elsevier, vol. 14(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masako Ikefuji & Roger Laeven & Jan Magnus & Chris Muris, 2014. "Expected Utility and Catastrophic Risk," Tinbergen Institute Discussion Papers 14-133/III, Tinbergen Institute.
    2. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    3. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    4. Andrea Rampa, 2020. "Climate change, catastrophes and Dismal Theorem: a critical review [Klimawandel, Katastrophen und das „Dismal Theorem“: eine kritische Überprüfung]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 40(2), pages 113-136, October.
    5. Masako Ikefuji & Roger J. A. Laeven & Jan R. Magnus & Chris Muris, 2011. "Weitzman meets Nordhaus: Expected utility and catastrophic risk in a stochastic economy-climate model," ISER Discussion Paper 0825, Institute of Social and Economic Research, Osaka University.
    6. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    7. Antony Millner, 2013. "On Welfare Frameworks and Catastrophic Climate Risks," CESifo Working Paper Series 4442, CESifo.
    8. Horowitz, John & Lange, Andreas, 2014. "Cost–benefit analysis under uncertainty — A note on Weitzman's dismal theorem," Energy Economics, Elsevier, vol. 42(C), pages 201-203.
    9. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    10. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
    11. Kenneth Arrow & Marcel Priebsch, 2014. "Bliss, Catastrophe, and Rational Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(4), pages 491-509, August.
    12. Assa, Hirbod & Zimper, Alexander, 2018. "Preferences over all random variables: Incompatibility of convexity and continuity," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 71-83.
    13. Bond, Craig A. & Iverson, Terrence, 2011. "Modeling Information in Environmental Decision-Making," Western Economics Forum, Western Agricultural Economics Association, vol. 10(2), pages 1-17.
    14. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    15. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.
    16. Chambers, Robert G. & Melkonyan, Tigran, 2017. "Ambiguity, reasoned determination, and climate-change policy," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 74-92.
    17. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Tail-effect and the Role of Greenhouse Gas Emissions Control," Working Paper Series 6613, Department of Economics, University of Sussex Business School.
    18. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    19. Stergios Athanassoglou & Anastasios Xepapadeas, 2011. "Pollution Control: When, and How, to be Precautious," Working Papers 2011.18, Fondazione Eni Enrico Mattei.
    20. Buchholz, Wolfgang & Schymura, Michael, 2012. "Expected utility theory and the tyranny of catastrophic risks," Ecological Economics, Elsevier, vol. 77(C), pages 234-239.

    More about this item

    Keywords

    Expected utility; Catastrophe; Consumption; Cost-benefit analysis; Risk management and self-insurance; Power utility; Exponential utility; Heavy tails;
    All these keywords.

    JEL classification:

    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:306-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.