IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v33y2013i1d10.1007_s10669-012-9429-y.html
   My bibliography  Save this article

Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse

Author

Listed:
  • Seth D. Baum

    (Global Catastrophic Risk Institute
    Pennsylvania State University
    Columbia University
    Blue Marble Space Institute of Science)

  • Timothy M. Maher

    (Global Catastrophic Risk Institute
    Center for Environmental Policy, Bard College)

  • Jacob Haqq-Misra

    (Global Catastrophic Risk Institute
    Blue Marble Space Institute of Science)

Abstract

Perceived failure to reduce greenhouse gas emissions has prompted interest in avoiding the harms of climate change via geoengineering, that is, the intentional manipulation of Earth system processes. Perhaps the most promising geoengineering technique is stratospheric aerosol injection (SAI), which reflects incoming solar radiation, thereby lowering surface temperatures. This paper analyzes a scenario in which SAI brings great harm on its own. The scenario is based on the issue of SAI intermittency, in which aerosol injection is halted, sending temperatures rapidly back toward where they would have been without SAI. The rapid temperature increase could be quite damaging, which in turn creates a strong incentive to avoid intermittency. In the scenario, a catastrophic societal collapse eliminates society’s ability to continue SAI, despite the incentive. The collapse could be caused by a pandemic, nuclear war, or other global catastrophe. The ensuing intermittency hits a population that is already vulnerable from the initial collapse, making for a double catastrophe. While the outcomes of the double catastrophe are difficult to predict, plausible worst-case scenarios include human extinction. The decision to implement SAI is found to depend on whether global catastrophe is more likely from double catastrophe or from climate change alone. The SAI double catastrophe scenario also strengthens arguments for greenhouse gas emissions reductions and against SAI, as well as for building communities that could be self-sufficient during global catastrophes. Finally, the paper demonstrates the value of integrative, systems-based global catastrophic risk analysis.

Suggested Citation

  • Seth D. Baum & Timothy M. Maher & Jacob Haqq-Misra, 2013. "Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse," Environment Systems and Decisions, Springer, vol. 33(1), pages 168-180, March.
  • Handle: RePEc:spr:envsyd:v:33:y:2013:i:1:d:10.1007_s10669-012-9429-y
    DOI: 10.1007/s10669-012-9429-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-012-9429-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-012-9429-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Dietz, 2011. "High impact, low probability? An empirical analysis of risk in the economics of climate change," Climatic Change, Springer, vol. 108(3), pages 519-541, October.
    2. Naomi Vaughan & Timothy Lenton, 2011. "A review of climate geoengineering proposals," Climatic Change, Springer, vol. 109(3), pages 745-790, December.
    3. Marlos Goes & Nancy Tuana & Klaus Keller, 2011. "The economics (or lack thereof) of aerosol geoengineering," Climatic Change, Springer, vol. 109(3), pages 719-744, December.
    4. Seth D. Baum, 2010. "Is Humanity Doomed? Insights from Astrobiology," Sustainability, MDPI, vol. 2(2), pages 1-13, February.
    5. Robert S. Pindyck, 2011. "Fat Tails, Thin Tails, and Climate Change Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 258-274, Summer.
    6. Jason G. Matheny, 2007. "Reducing the Risk of Human Extinction," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1335-1344, October.
    7. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    8. Alan Robock, 2011. "Nuclear winter is a real and present danger," Nature, Nature, vol. 473(7347), pages 275-276, May.
    9. Dietz, Simon, 2011. "High impact, low probability?: an empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 38586, London School of Economics and Political Science, LSE Library.
    10. J. Pongratz & D. B. Lobell & L. Cao & K. Caldeira, 2012. "Crop yields in a geoengineered climate," Nature Climate Change, Nature, vol. 2(2), pages 101-105, February.
    11. William D. Nordhaus, 2011. "The Economics of Tail Events with an Application to Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 240-257, Summer.
    12. Ackerman, Frank & Stanton, Elizabeth A. & Bueno, Ramón, 2010. "Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE," Ecological Economics, Elsevier, vol. 69(8), pages 1657-1665, June.
    13. Michael Hopkin, 2008. "Biodiversity: Frozen futures," Nature, Nature, vol. 452(7186), pages 404-405, March.
    14. David G. Victor, 2008. "On the regulation of geoengineering," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 24(2), pages 322-336, Summer.
    15. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Alexander Sears, 2020. "Existential Security: Towards a Security Framework for the Survival of Humanity," Global Policy, London School of Economics and Political Science, vol. 11(2), pages 255-266, April.
    2. Baum, Seth D. & Handoh, Itsuki C., 2014. "Integrating the planetary boundaries and global catastrophic risk paradigms," Ecological Economics, Elsevier, vol. 107(C), pages 13-21.
    3. Seth D. Baum & David C. Denkenberger & Joshua M. Pearce & Alan Robock & Richelle Winkler, 2015. "Resilience to global food supply catastrophes," Environment Systems and Decisions, Springer, vol. 35(2), pages 301-313, June.
    4. Seth D. Baum, 2015. "Risk and resilience for unknown, unquantifiable, systemic, and unlikely/catastrophic threats," Environment Systems and Decisions, Springer, vol. 35(2), pages 229-236, June.
    5. Joseph Versen & Zaruhi Mnatsakanyan & Johannes Urpelainen, 2022. "Concerns of climate intervention: understanding geoengineering security concerns in the Arctic and beyond," Climatic Change, Springer, vol. 171(3), pages 1-20, April.
    6. Anthony Michael Barrett, 2017. "Value of Global Catastrophic Risk (GCR) Information: Cost-Effectiveness-Based Approach for GCR Reduction," Decision Analysis, INFORMS, vol. 14(3), pages 187-203, September.
    7. Seth D. Baum, 2023. "Assessing natural global catastrophic risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2699-2719, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    2. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    3. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    4. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Tail-effect and the Role of Greenhouse Gas Emissions Control," Working Paper Series 6613, Department of Economics, University of Sussex Business School.
    5. Raphael Calel & David Stainforth & Simon Dietz, 2015. "Tall tales and fat tails: the science and economics of extreme warming," Climatic Change, Springer, vol. 132(1), pages 127-141, September.
    6. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    7. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    8. Dietz, Simon, 2012. "The treatment of risk and uncertainty in the US social cost of carbon for regulatory impact analysis," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-12.
    9. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    10. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2019. "Social Cost of Carbon under stochastic tipping points: when does risk play a role?," Working Papers hal-02408904, HAL.
    11. Kopp, Robert E. & Mignone, Bryan K., 2012. "The US government's social cost of carbon estimates after their first two years: Pathways for improvement," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-41.
    12. Kousky, Carolyn & Kopp, Robert E. & Cooke, Roger M., 2011. "Risk premia and the social cost of carbon: A review," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-24.
    13. Simon Dietz & Anca N. Matei, 2013. "Is there space for agreement on climate change? A non-parametric approach to policy evaluation," GRI Working Papers 136, Grantham Research Institute on Climate Change and the Environment.
    14. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    15. Vale, Petterson Molina, 2016. "The changing climate of climate change economics," Ecological Economics, Elsevier, vol. 121(C), pages 12-19.
    16. Baran Doda, 2014. "Why is geoengineering so tempting?," GRI Working Papers 170, Grantham Research Institute on Climate Change and the Environment.
    17. Arvaniti, Maria, 2016. "Uncertainty, Extreme Outcomes and Climate Change: a critique," CERE Working Papers 2016:11, CERE - the Center for Environmental and Resource Economics.
    18. Jasper N. Meya & Ulrike Kornek & Kai Lessmann, 2018. "How empirical uncertainties influence the stability of climate coalitions," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(2), pages 175-198, April.
    19. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    20. Simon Dietz, 2011. "The treatment of risk and uncertainty in the US Social Cost of Carbon for Regulatory Impact Analysis," GRI Working Papers 54, Grantham Research Institute on Climate Change and the Environment.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:33:y:2013:i:1:d:10.1007_s10669-012-9429-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.