IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v32y2020ics1544612318304380.html
   My bibliography  Save this article

Brent crude oil prices volatility during major crises

Author

Listed:
  • Zavadska, Miroslava
  • Morales, Lucía
  • Coughlan, Joseph

Abstract

Volatility patterns in Brent crude oil spot and futures prices are examined during four major crises that significantly affected the oil markets: the First Gulf war 1990/91; the Asian Financial crisis 1997/98; the US terrorist attack 2001; and the Global Financial crisis 2008/9. The selected crises arose due to different triggers having diverse implications for oil market participants. The outcomes reveal higher levels of volatility during crises that was directly associated with oil supply/demand disruptions and higher volatility persistence during financial/economic crises, indicating that volatility persistence is a key issue when uncertainty is derived from global economic and financial instability.

Suggested Citation

  • Zavadska, Miroslava & Morales, Lucía & Coughlan, Joseph, 2020. "Brent crude oil prices volatility during major crises," Finance Research Letters, Elsevier, vol. 32(C).
  • Handle: RePEc:eee:finlet:v:32:y:2020:i:c:s1544612318304380
    DOI: 10.1016/j.frl.2018.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612318304380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2018.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland L. Johnson, 1960. "The Theory of Hedging and Speculation in Commodity Futures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 139-151.
    2. Salisu, Afees A. & Fasanya, Ismail O., 2013. "Modelling oil price volatility with structural breaks," Energy Policy, Elsevier, vol. 52(C), pages 554-562.
    3. Lee, Junsoo & List, John A. & Strazicich, Mark C., 2006. "Non-renewable resource prices: Deterministic or stochastic trends?," Journal of Environmental Economics and Management, Elsevier, vol. 51(3), pages 354-370, May.
    4. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    5. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    6. James D. Hamilton, 2014. "The Changing Face of World Oil Markets," NBER Working Papers 20355, National Bureau of Economic Research, Inc.
    7. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2004. "On the validity of the Jarque-Bera normality test in conditionally heteroskedastic dynamic regression models," Economics Letters, Elsevier, vol. 83(3), pages 307-312, June.
    8. Lucía Morales & Bernadette Andreosso-O’Callaghan, 2014. "Volatility analysis of precious metals returns and oil returns: An ICSS approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(3), pages 492-517, July.
    9. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Michel A. Robe & Jonathan Wallen, 2016. "Fundamentals, Derivatives Market Information and Oil Price Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(4), pages 317-344, April.
    12. Narayan, Paresh Kumar & Narayan, Seema, 2007. "Modelling oil price volatility," Energy Policy, Elsevier, vol. 35(12), pages 6549-6553, December.
    13. Orbaneja, José R. Valdivia & Iyer, Subramanian R. & Simkins, Betty J., 2018. "Terrorism and oil markets: A cross-sectional evaluation," Finance Research Letters, Elsevier, vol. 24(C), pages 42-48.
    14. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    15. Oberndorfer, Ulrich, 2009. "Energy prices, volatility, and the stock market: Evidence from the Eurozone," Energy Policy, Elsevier, vol. 37(12), pages 5787-5795, December.
    16. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    17. Evgenidis, Anastasios, 2018. "Do all oil price shocks have the same impact? Evidence from the euro area," Finance Research Letters, Elsevier, vol. 26(C), pages 150-155.
    18. Diaz, Elena Maria & de Gracia, Fernando Perez, 2017. "Oil price shocks and stock returns of oil and gas corporations," Finance Research Letters, Elsevier, vol. 20(C), pages 75-80.
    19. Dowling, Michael & Cummins, Mark & Lucey, Brian M., 2016. "Psychological barriers in oil futures markets," Energy Economics, Elsevier, vol. 53(C), pages 293-304.
    20. Ozdemir, Zeynel Abidin & Gokmenoglu, Korhan & Ekinci, Cagdas, 2013. "Persistence in crude oil spot and futures prices," Energy, Elsevier, vol. 59(C), pages 29-37.
    21. Zhang, Yue-Jun & Wang, Zi-Yi, 2013. "Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence," Applied Energy, Elsevier, vol. 104(C), pages 220-228.
    22. Kang, Wensheng & Perez de Gracia, Fernando & Ratti, Ronald A., 2017. "Oil price shocks, policy uncertainty, and stock returns of oil and gas corporations," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 344-359.
    23. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yiqun & Ji, Hao & Cai, Xiurong & Li, Jiangchen, 2023. "Joint extreme risk of energy prices-evidence from European energy markets," Finance Research Letters, Elsevier, vol. 56(C).
    2. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    3. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2024. "The impact of Russia–Ukraine war on crude oil prices: an EMC framework," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    4. Soni, Rajat Kumar & Nandan, Tanuj, 2022. "Modeling Covid-19 contagious effect between asset markets and commodity futures in India," Resources Policy, Elsevier, vol. 79(C).
    5. Tarek Bouazizi & Mongi Lassoued & Zouhaier Hadhek, 2021. "Oil Price Volatility Models during Coronavirus Crisis: Testing with Appropriate Models Using Further Univariate GARCH and Monte Carlo Simulation Models," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 281-292.
    6. Sánchez Arévalo, Jorge Luis & Ferreira de Andrade, Alisson Maxwell & de Oliveira Vendramin, Elisabeth, 2023. "Ibovespa’s response to the behavior of oil and ore prices during the international crisis caused by COVID-19," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 15(1), pages 21-43, January.
    7. Qianjie Geng & Xianfeng Hao & Yudong Wang, 2024. "Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 309-325, March.
    8. Jiaying Peng & Zhenghui Li & Benjamin M. Drakeford, 2020. "Dynamic Characteristics of Crude Oil Price Fluctuation—From the Perspective of Crude Oil Price Influence Mechanism," Energies, MDPI, vol. 13(17), pages 1-19, August.
    9. Alaba, Oluwayemisi O. & Ojo, Oluwadare O. & Yaya, OlaOluwa S & Abu, Nurudeen & Ajobo, Saheed A., 2021. "Comparative Analysis of Market Efficiency and Volatility of Energy Prices Before and During COVID-19 Pandemic Periods," MPRA Paper 109825, University Library of Munich, Germany.
    10. Qian, Yu & Xu, Zeshui & Qin, Yong & Gou, Xunjie & Skare, Marinko, 2023. "Measuring the varying relationships between sustainable development and oil booms in different contexts: An empirical study," Resources Policy, Elsevier, vol. 85(PB).
    11. Ahmad, Shakil, 2021. "Does COVID-19 effects the United States crude oil imports price?," Economic Consultant, Roman I. Ostapenko, vol. 33(1), pages 57-67.
    12. Szczygielski, Jan Jakub & Brzeszczyński, Janusz & Charteris, Ailie & Bwanya, Princess Rutendo, 2022. "The COVID-19 storm and the energy sector: The impact and role of uncertainty," Energy Economics, Elsevier, vol. 109(C).
    13. Zhao, Jing, 2022. "Exploring the influence of the main factors on the crude oil price volatility: An analysis based on GARCH-MIDAS model with Lasso approach," Resources Policy, Elsevier, vol. 79(C).
    14. Apostolakis, George N. & Floros, Christos & Gkillas, Konstantinos & Wohar, Mark, 2021. "Financial stress, economic policy uncertainty, and oil price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    15. You‐How Go & Jia‐Jun Teo & Kam Fong Chan, 2023. "The effectiveness of crude oil futures hedging during infectious disease outbreaks in the 21st century," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1559-1575, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarek Bouazizi & Mongi Lassoued & Zouhaier Hadhek, 2021. "Oil Price Volatility Models during Coronavirus Crisis: Testing with Appropriate Models Using Further Univariate GARCH and Monte Carlo Simulation Models," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 281-292.
    2. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    3. Mushtaq Hussain Khan & Junaid Ahmed & Mazhar Mughal & Imtiaz Hussain Khan, 2023. "Oil price volatility and stock returns: Evidence from three oil‐price wars," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3162-3182, July.
    4. Jiaying Peng & Zhenghui Li & Benjamin M. Drakeford, 2020. "Dynamic Characteristics of Crude Oil Price Fluctuation—From the Perspective of Crude Oil Price Influence Mechanism," Energies, MDPI, vol. 13(17), pages 1-19, August.
    5. Pablo Cansado-Bravo & Carlos Rodríguez-Monroy, 2018. "Persistence of Oil Prices in Gas Import Prices and the Resilience of the Oil-Indexation Mechanism. The Case of Spanish Gas Import Prices," Energies, MDPI, vol. 11(12), pages 1-17, December.
    6. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    8. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    9. Martina Assereto & Julie Byrne, 2020. "The Implications of Policy Uncertainty on Solar Photovoltaic Investment," Energies, MDPI, vol. 13(23), pages 1-20, November.
    10. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    11. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    12. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
    13. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    14. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    15. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    16. Raúl De Jesús Gutiérrez & Reyna Vergara González & Miguel A. Díaz Carreño, 2015. "Predicción de la volatilidad en el mercado del petróleo mexicano ante la presencia de efectos asimétricos," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, March.
    17. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    18. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    19. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    20. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.

    More about this item

    Keywords

    Crude oil; Volatility; Energy; Crises;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:32:y:2020:i:c:s1544612318304380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.