IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp708-720.html
   My bibliography  Save this article

Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector

Author

Listed:
  • Heinrichs, Heidi
  • Jochem, Patrick
  • Fichtner, Wolf

Abstract

The EU ETS (European Emissions Trading System) is being enlarged stepwise to cover an increasing amount of overall European CO2 emissions. However, one of the largest and still growing CO2-emitting sector, the transport sector, and particularly road transport, has not yet been included in the EU ETS. Against this background, the question arises whether integrating the road transport sector in the EU ETS represents a cost-efficient CO2 reduction strategy. For this reason, the consequences of this integration are analysed with a focus on Germany. To do so we utilise a model-based approach. In order to account for both sectors simultaneously, we couple an electricity system model, PERSEUS-EU (Package for Emission Reduction Strategies in Energy Use and Supply in Europe), with a road transport model, COMIT (CO2 emission Mitigation in the Transport sector). The time horizon we consider ranges from 2010 to 2030. In our analysis, we differentiate our scenarios according to commodity prices, share of renewable energies in electricity generation and share of electric vehicles. The results show that the enlargement of the EU ETS to include road transport leads to a reduction of overall CO2 emissions, but equally reduces the mitigation efforts in the road transport sector. Simultaneously, the German electricity sector is mainly influenced according to the certificate demand or supply of the road transport sector.

Suggested Citation

  • Heinrichs, Heidi & Jochem, Patrick & Fichtner, Wolf, 2014. "Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector," Energy, Elsevier, vol. 69(C), pages 708-720.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:708-720
    DOI: 10.1016/j.energy.2014.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartocci, Anna & Pisani, Massimiliano, 2013. "“Green” fuel tax on private transportation services and subsidies to electric energy. A model-based assessment for the main European countries," Energy Economics, Elsevier, vol. 40(S1), pages 32-57.
    2. Marianne Hatzopoulou & Jiang Hao & Eric Miller, 2011. "Simulating the impacts of household travel on greenhouse gas emissions, urban air quality, and population exposure," Transportation, Springer, vol. 38(6), pages 871-887, November.
    3. repec:zbw:rwirep:0032 is not listed on IDEAS
    4. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    5. Mueller, Michel G. & de Haan, Peter, 2009. "How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part I: Model structure, simulation of bounded rationality, and model validation," Energy Policy, Elsevier, vol. 37(3), pages 1072-1082, March.
    6. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    7. Kiviluoma, Juha & Meibom, Peter, 2011. "Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles," Energy, Elsevier, vol. 36(3), pages 1758-1767.
    8. Manuel Frondel & Jorg Peters & Colin Vance, 2008. "Identifying the Rebound: Evidence from a German Household Panel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 145-164.
    9. Kannan, Ramachandran, 2011. "The development and application of a temporal MARKAL energy system model using flexible time slicing," Applied Energy, Elsevier, vol. 88(6), pages 2261-2272, June.
    10. de Haan, Peter & Mueller, Michel G. & Scholz, Roland W., 2009. "How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part II: Forecasting effects of feebates based on energy-efficiency," Energy Policy, Elsevier, vol. 37(3), pages 1083-1094, March.
    11. Martinsen, Dag & Funk, Carolin & Linssen, Jochen, 2010. "Biomass for transportation fuels--A cost-effective option for the German energy supply?," Energy Policy, Elsevier, vol. 38(1), pages 128-140, January.
    12. Flachsland, Christian & Brunner, Steffen & Edenhofer, Ottmar & Creutzig, Felix, 2011. "Climate policies for road transport revisited (II): Closing the policy gap with cap-and-trade," Energy Policy, Elsevier, vol. 39(4), pages 2100-2110, April.
    13. Frondel, Manuel & Peters, Jörg & Vance, Colin, 2007. "Identifying the Rebound: Theoretical Issues and Empirical Evidence from a German Household Panel," RWI Discussion Papers 57, RWI - Leibniz-Institut für Wirtschaftsforschung.
    14. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    15. Raux, Charles & Marlot, Grégoire, 2005. "A system of tradable CO2 permits applied to fuel consumption by motorists," Transport Policy, Elsevier, vol. 12(3), pages 255-265, May.
    16. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    17. Nagl, Stephan & Fürsch, Michaela & Paulus, Moritz & Richter, Jan & Trüby, Johannes & Lindenberger, Dietmar, 2011. "Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050," Utilities Policy, Elsevier, vol. 19(3), pages 185-192.
    18. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    19. Metz, Michael & Doetsch, Christian, 2012. "Electric vehicles as flexible loads – A simulation approach using empirical mobility data," Energy, Elsevier, vol. 48(1), pages 369-374.
    20. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
    21. Möst, Dominik & Fichtner, Wolf, 2010. "Renewable energy sources in European energy supply and interactions with emission trading," Energy Policy, Elsevier, vol. 38(6), pages 2898-2910, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédéric Babonneau & Alain Haurie & Marc Vielle, 2016. "Assessment of balanced burden-sharing in the 2050 EU climate/energy roadmap: a metamodeling approach," Climatic Change, Springer, vol. 134(4), pages 505-519, February.
    2. Li, Wenjie & Yang, Lixing & Wang, Li & Zhou, Xuesong & Liu, Ronghui & Gao, Ziyou, 2017. "Eco-reliable path finding in time-variant and stochastic networks," Energy, Elsevier, vol. 121(C), pages 372-387.
    3. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    4. Xiao-Yi Li & Bao-Jun Tang, 2017. "Incorporating the transport sector into carbon emission trading scheme: an overview and outlook," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 683-698, September.
    5. Marc Fleurbaey & Ulrike Kornek, 2021. "When redistribution makes personalized pricing of externalities useless," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 23(2), pages 363-375, April.
    6. Landis, Florian & Fredriksson, Gustav & Rausch, Sebastian, 2021. "Between- and within-country distributional impacts from harmonizing carbon prices in the EU," Energy Economics, Elsevier, vol. 103(C).
    7. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    8. Chang, Ching-Chih & Chung, Chia-Ling, 2018. "Greenhouse gas mitigation policies in Taiwan's road transportation sectors," Energy Policy, Elsevier, vol. 123(C), pages 299-307.
    9. Solaymani, Saeed & Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah, 2015. "The impacts of climate change policies on the transportation sector," Energy, Elsevier, vol. 81(C), pages 719-728.
    10. Paltsev, Sergey & Chen, Y.-H. Henry & Karplus, Valerie & Kishimoto, Paul & Reilly, John & Loeschel, Andreas & von Graevenitz, Kathrine & Koesler, Simon, 2015. "Reducing CO2 from cars in the European Union: Emission standards or emission trading?," CAWM Discussion Papers 84, University of Münster, Münster Center for Economic Policy (MEP).
    11. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Li, Yu & Zheng, Ji & Li, Zehong & Yuan, Liang & Yang, Yang & Li, Fujia, 2017. "Re-estimating CO2 emission factors for gasoline passenger cars adding driving behaviour characteristics——A case study of Beijing," Energy Policy, Elsevier, vol. 102(C), pages 353-361.
    13. Sajid, M. Jawad & Cao, Qingren & Kang, Wei, 2019. "Transport sector carbon linkages of EU's top seven emitters," Transport Policy, Elsevier, vol. 80(C), pages 24-38.
    14. Qu Zhao, 2018. "Electromobility research in Germany and China: structural differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 473-493, October.
    15. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2023. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Working Paper Series in Production and Energy 69, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Wang, Xu & Zhu, Lei & Fan, Ying, 2018. "Transaction costs, market structure and efficient coverage of emissions trading scheme: A microlevel study from the pilots in China," Applied Energy, Elsevier, vol. 220(C), pages 657-671.
    17. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    18. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    19. Letnik, Tomislav & Marksel, Maršenka & Luppino, Giuseppe & Bardi, Andrea & Božičnik, Stane, 2018. "Review of policies and measures for sustainable and energy efficient urban transport," Energy, Elsevier, vol. 163(C), pages 245-257.
    20. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    21. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    22. Sergey Paltsev & Y.-H. Henry Chen & Valerie Karplus & Paul Kishimoto & John Reilly & Andreas Löschel & Kathrine Graevenitz & Simon Koesler, 2018. "Reducing CO2 from cars in the European Union," Transportation, Springer, vol. 45(2), pages 573-595, March.
    23. Gössling, Stefan & Metzler, Daniel, 2017. "Germany's climate policy: Facing an automobile dilemma," Energy Policy, Elsevier, vol. 105(C), pages 418-428.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuan & Wang, Can & Liu, Wenling & Zhou, Peng, 2017. "Microsimulation of low carbon urban transport policies in Beijing," Energy Policy, Elsevier, vol. 107(C), pages 561-572.
    2. Sousa, Tiago & Vale, Zita & Carvalho, Joao Paulo & Pinto, Tiago & Morais, Hugo, 2014. "A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles," Energy, Elsevier, vol. 67(C), pages 81-96.
    3. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    4. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    5. Sergey Paltsev & Y.-H. Henry Chen & Valerie Karplus & Paul Kishimoto & John Reilly & Andreas Löschel & Kathrine Graevenitz & Simon Koesler, 2018. "Reducing CO2 from cars in the European Union," Transportation, Springer, vol. 45(2), pages 573-595, March.
    6. Martin, Elliot & Shaheen, Susan & Lipman, Timothy & Camel, Madonna, 2014. "Evaluating the public perception of a feebate policy in California through the estimation and cross-validation of an ordinal regression model," Transport Policy, Elsevier, vol. 33(C), pages 144-153.
    7. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    8. Coad, Alex & de Haan, Peter & Woersdorfer, Julia Sophie, 2009. "Consumer support for environmental policies: An application to purchases of green cars," Ecological Economics, Elsevier, vol. 68(7), pages 2078-2086, May.
    9. Nayum, Alim & Klöckner, Christian A. & Prugsamatz, Sunita, 2013. "Influences of car type class and carbon dioxide emission levels on purchases of new cars: A retrospective analysis of car purchases in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 96-108.
    10. Haq, Gary & Weiss, Martin, 2016. "CO2 labelling of passenger cars in Europe: Status, challenges, and future prospects," Energy Policy, Elsevier, vol. 95(C), pages 324-335.
    11. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    12. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    13. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    14. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    15. Liu, Nian & Chen, Zheng & Liu, Jie & Tang, Xiao & Xiao, Xiangning & Zhang, Jianhua, 2014. "Multi-objective optimization for component capacity of the photovoltaic-based battery switch stations: Towards benefits of economy and environment," Energy, Elsevier, vol. 64(C), pages 779-792.
    16. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    17. Selby, Brent & Kockelman, Kara M., 2012. "Microsimulating Automobile Markets: Evolution of Vehicle Holdings and Vehicle Pricing Dynamics," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 51(2).
    18. Freire-González, Jaume & Font Vivanco, David & Puig-Ventosa, Ignasi, 2017. "Economic structure and energy savings from energy efficiency in households," Ecological Economics, Elsevier, vol. 131(C), pages 12-20.
    19. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    20. Matiaske, Wenzel & Menges, Roland & Spiess, Martin, 2012. "Modifying the rebound: It depends! Explaining mobility behavior on the basis of the German socio-economic panel," Energy Policy, Elsevier, vol. 41(C), pages 29-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:708-720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.