IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223017188.html
   My bibliography  Save this article

Effects of new energy vehicle adoption on provincial energy efficiency in China: From the perspective of regional imbalances

Author

Listed:
  • Xiong, Yongqing
  • Cheng, Qian

Abstract

The swift expansion of new energy vehicle (NEV) adoption in recent years presents a prospect for improving regional energy efficiency. Based on the panel data of 30 provinces in China from 2010 to 2020, this study analyzes the impact of NEV adoption on provincial energy efficiency from the perspective of regional imbalances. The conclusions are as follows. The NEV adoption significantly improves provincial energy efficiency and has a stronger contribution to the provinces with lower energy efficiency. Moreover, the NEV adoption can narrow inter-provincial energy efficiency differences, which is only valid in the power grid region, but not significant between the power grid regions. The potential mechanisms of inter-provincial electricity transmission and renewable energy development are verified. Finally, the extended analysis reveals that the government intervention negatively moderates the relationship between the NEV adoption and energy efficiency, while market integration plays a significant positive moderating role. These results provide useful references for the widespread adoption of NEVs to improve energy efficiency and regional coordinated development.

Suggested Citation

  • Xiong, Yongqing & Cheng, Qian, 2023. "Effects of new energy vehicle adoption on provincial energy efficiency in China: From the perspective of regional imbalances," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017188
    DOI: 10.1016/j.energy.2023.128324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Dong & He, Hongwen & Cao, Jianfei, 2020. "Hybrid electric vehicle electric motors for optimum energy efficiency: A computationally efficient design," Energy, Elsevier, vol. 203(C).
    2. He, Xiaoping & Yu, Yuxuan & Jiang, Shuo, 2023. "City centrality, population density and energy efficiency," Energy Economics, Elsevier, vol. 117(C).
    3. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    4. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    5. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    6. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
    7. Zhang, Lei & Qin, Quande, 2018. "China’s new energy vehicle policies: Evolution, comparison and recommendation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 57-72.
    8. Enrica Cian & Ian Sue Wing, 2019. "Correction to: Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1415-1415, August.
    9. Chen, Maozhi & Sinha, Avik & Hu, Kexiang & Shah, Muhammad Ibrahim, 2021. "Impact of technological innovation on energy efficiency in industry 4.0 era: Moderation of shadow economy in sustainable development," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    10. Yuan, Meng & Thellufsen, Jakob Zinck & Lund, Henrik & Liang, Yongtu, 2021. "The electrification of transportation in energy transition," Energy, Elsevier, vol. 236(C).
    11. Xin-gang, Zhao & Xin, Meng & Ying, Zhou & Pei-ling, Li, 2020. "Policy inducement effect in energy efficiency: An empirical analysis of China," Energy, Elsevier, vol. 211(C).
    12. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    13. Ang, B.W., 2006. "Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index," Energy Policy, Elsevier, vol. 34(5), pages 574-582, March.
    14. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Jacobson, Arne & Milman, Anita D. & Kammen, Daniel M., 2005. "Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity," Energy Policy, Elsevier, vol. 33(14), pages 1825-1832, September.
    16. Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "The market case for electric mobility: Investigating electric vehicle business models for mass adoption," Energy, Elsevier, vol. 194(C).
    17. Borozan, Djula, 2018. "Technical and total factor energy efficiency of European regions: A two-stage approach," Energy, Elsevier, vol. 152(C), pages 521-532.
    18. Jorgensen, K., 2008. "Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport," Utilities Policy, Elsevier, vol. 16(2), pages 72-79, June.
    19. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    20. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    21. Liu, Yingqi & Kokko, Ari, 2013. "Who does what in China’s new energy vehicle industry?," Energy Policy, Elsevier, vol. 57(C), pages 21-29.
    22. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    23. Yuan, Xueliang & Liu, Xin & Zuo, Jian, 2015. "The development of new energy vehicles for a sustainable future: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 298-305.
    24. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    25. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
    26. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    27. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    28. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
    29. Wang, Ying & Deng, Xiangzheng & Zhang, Hongwei & Liu, Yujie & Yue, Tianxiang & Liu, Gang, 2022. "Energy endowment, environmental regulation, and energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    30. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    31. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    32. Liang Nie and ZhongXiang Zhang, 2022. "Market Segmentation and Energy Efficiency: Evidence from China's Regional Economies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    33. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    34. Sun, J. W., 2002. "The decrease in the difference of energy intensities between OECD countries from 1971 to 1998," Energy Policy, Elsevier, vol. 30(8), pages 631-635, June.
    35. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    36. Xu, Mengmeng & Tan, Ruipeng, 2021. "Removing energy allocation distortion to increase economic output and energy efficiency in China," Energy Policy, Elsevier, vol. 150(C).
    37. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    38. Chi, Yuan-Ying & Wang, Yuan-Yuan & Xu, Jin-Hua, 2021. "Estimating the impact of the license plate quota policy for ICEVs on new energy vehicle adoption by using synthetic control method," Energy Policy, Elsevier, vol. 149(C).
    39. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    40. Xinshu Zhao & John G. Lynch & Qimei Chen, 2010. "Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 37(2), pages 197-206, August.
    41. Ouyang, Wendi & Yang, Jian-bo, 2020. "The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model," Energy, Elsevier, vol. 197(C).
    42. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    43. Vergis, Sydney & Chen, Belinda, 2015. "Comparison of plug-in electric vehicle adoption in the United States: A state by state approach," Research in Transportation Economics, Elsevier, vol. 52(C), pages 56-64.
    44. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    45. Liu, Tong & Xu, Gang & Cai, Peng & Tian, Longhu & Huang, Qili, 2011. "Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country," Renewable Energy, Elsevier, vol. 36(4), pages 1284-1292.
    46. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Quande & Yu, Ying & Liu, Yuan & Zhou, Jianqing & Chen, Xiude, 2023. "Industrial agglomeration and energy efficiency: A new perspective from market integration," Energy Policy, Elsevier, vol. 183(C).
    2. Florinda F. Martins & Hélio Castro & Miroslava Smitková & Carlos Felgueiras & Nídia Caetano, 2024. "Energy and Circular Economy: Nexus beyond Concepts," Sustainability, MDPI, vol. 16(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    2. Wang, Ying & Deng, Xiangzheng & Zhang, Hongwei & Liu, Yujie & Yue, Tianxiang & Liu, Gang, 2022. "Energy endowment, environmental regulation, and energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    4. Eirini Stergiou & Nikos Rigas & Eftychia Zaroutieri & Konstantinos Kounetas, 2023. "Energy, renewable and technical efficiency convergence: a global evidence," Economic Change and Restructuring, Springer, vol. 56(3), pages 1601-1628, June.
    5. Wei Yang & Zudi Lu & Di Wang & Yanmin Shao & Jinfeng Shi, 2020. "Sustainable Evolution of China’s Regional Energy Efficiency Based on a Weighted SBM Model with Energy Substitutability," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    6. Zhang, Caiqing & Chen, Panyu, 2022. "Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries," Energy, Elsevier, vol. 241(C).
    7. Qunwei Wang & Peng Zhou & Zengyao Zhao & Neng Shen, 2014. "Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach," Sustainability, MDPI, vol. 6(8), pages 1-17, August.
    8. Song, Malin & Xie, Qianjiao & Shen, Zhiyang, 2021. "Impact of green credit on high-efficiency utilization of energy in China considering environmental constraints," Energy Policy, Elsevier, vol. 153(C).
    9. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    10. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    11. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    12. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    13. Ouyang, Xiaoling & Chen, Jiaqi & Du, Kerui, 2021. "Energy efficiency performance of the industrial sector: From the perspective of technological gap in different regions in China," Energy, Elsevier, vol. 214(C).
    14. Liangjun Yi & Wei Zhang & Yuanxin Liu & Weilin Zhang, 2021. "An Analysis of the Impact of Market Segmentation on Energy Efficiency: A Spatial Econometric Model Applied in China," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    15. Tao Ma & Xiaoxi Cao, 2022. "FDI, technological progress, and green total factor energy productivity: evidence from 281 prefecture cities in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11058-11088, September.
    16. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    17. Guo, Ran & Yuan, Yijun, 2020. "Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data," Energy Policy, Elsevier, vol. 145(C).
    18. Cui, Huanyu & Cao, Yuequn, 2023. "How can market-oriented environmental regulation improve urban energy efficiency? Evidence from quasi-experiment in China's SO2 trading emissions system," Energy, Elsevier, vol. 278(C).
    19. Guo, Wen & Liu, Xiaorui, 2022. "Market fragmentation of energy resource prices and green total factor energy efficiency in China," Resources Policy, Elsevier, vol. 76(C).
    20. Jiang, Lei & Zhou, Haifeng & He, Shixiong, 2021. "Does energy efficiency increase at the expense of output performance: Evidence from manufacturing firms in Jiangsu province, China," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.