IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223012914.html
   My bibliography  Save this article

Understanding the driving factors and finding the pathway to mitigating carbon emissions in China's Yangtze River Delta region

Author

Listed:
  • Chen, Changhua
  • Luo, Yuqing
  • Zou, Hong
  • Huang, Junbing

Abstract

Technological progress is an effective tool for controlling carbon emissions. However, because the connection between technological progress and carbon emissions remains under-theorized, the literature often discusses the overall effect of technological progress, ignoring the heterogeneity of technology. To better understand the driving factors of carbon emissions, we develop a new theoretical model based on the Green Solow model, in which technology is divided into production, energy conservation, and energy substitution technologies. Dynamic panel models are then applied to show the driving influence of different factors affecting carbon emissions in the Yangtze River Delta (YRD) region between 2000 and 2017. The results indicate that total technological progress is conducive to reducing carbon emissions. The heterogeneity analysis indicates a positive reduction effect on carbon emissions for energy substitution and energy conservation technologies, but not for production technology. Interestingly, production technology significantly drives carbon emissions. However, the results also suggest that to control carbon emissions, it is necessary to promote production technology. Further analysis suggests that production technology plays an important role in the effectiveness of energy conservation and energy substitution technologies in decreasing carbon emissions.

Suggested Citation

  • Chen, Changhua & Luo, Yuqing & Zou, Hong & Huang, Junbing, 2023. "Understanding the driving factors and finding the pathway to mitigating carbon emissions in China's Yangtze River Delta region," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223012914
    DOI: 10.1016/j.energy.2023.127897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingwen Zhang & Yin Dai & Chi-Wei Su & Dervis Kirikkaleli & Muhammad Umar, 2021. "Intertemporal change in the effect of economic growth on carbon emission in China," Energy & Environment, , vol. 32(7), pages 1207-1225, November.
    2. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    3. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    4. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    5. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    6. Wenwen Li & Wenping Wang & Yu Wang & Yingbo Qin, 2017. "Industrial structure, technological progress and CO2 emissions in China: Analysis based on the STIRPAT framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1545-1564, September.
    7. Rios, Vicente & Gianmoena, Lisa, 2018. "Convergence in CO2 emissions: A spatial economic analysis with cross-country interactions," Energy Economics, Elsevier, vol. 75(C), pages 222-238.
    8. Huang, Junbing & Xiang, Shiqi & Wang, Yajun & Chen, Xiang, 2021. "Energy-saving R&D and carbon intensity in China," Energy Economics, Elsevier, vol. 98(C).
    9. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    10. Jiang, Qingquan & Khattak, Shoukat Iqbal & Rahman, Zia Ur, 2021. "Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment," Energy, Elsevier, vol. 229(C).
    11. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    12. Huang, Junbing & Wang, Yajun & Guo, Lili, 2022. "Energy intensity and energy-specific technological progress: A case study in Guangdong province of China," Renewable Energy, Elsevier, vol. 184(C), pages 990-1001.
    13. Abid Rashid Gill & Kuperan K. Viswanathan & Sallahuddin Hassan, 2018. "A test of environmental Kuznets curve (EKC) for carbon emission and potential of renewable energy to reduce green house gases (GHG) in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1103-1114, June.
    14. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    15. Bentzen, Jan, 2004. "Estimating the rebound effect in US manufacturing energy consumption," Energy Economics, Elsevier, vol. 26(1), pages 123-134, January.
    16. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    17. Nguyen, Justin Hung & Phan, Hieu V., 2020. "Carbon risk and corporate capital structure," Journal of Corporate Finance, Elsevier, vol. 64(C).
    18. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    19. Xu, Lei & Chen, Nengcheng & Chen, Zeqiang, 2017. "Will China make a difference in its carbon intensity reduction targets by 2020 and 2030?," Applied Energy, Elsevier, vol. 203(C), pages 874-882.
    20. Jiandong Chen & Ming Gao & Ke Ma & Malin Song, 2020. "Different effects of technological progress on China's carbon emissions based on sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 481-492, February.
    21. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    22. Long, Xingle & Naminse, Eric Yaw & Du, Jianguo & Zhuang, Jincai, 2015. "Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 680-688.
    23. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    24. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    25. Lindmark, Magnus, 2002. "An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997," Ecological Economics, Elsevier, vol. 42(1-2), pages 333-347, August.
    26. Zhang, Wenjie & He, Lingling & Yuan, Hongping, 2022. "Enterprises’ decisions on adopting low-carbon technology by considering consumer perception disparity," Technovation, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gulmira Abbas & Alimujiang Kasimu, 2023. "Characteristics of Land-Use Carbon Emissions and Carbon Balance Zoning in the Economic Belt on the Northern Slope of Tianshan," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
    2. Jing Liang & Lingying Pan, 2023. "Effect of Scale and Structure Changes of China’s High-Carbon Industries on Regional Carbon Emissions," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Wang, Yajun & Huang, Junbing, 2022. "Pathway to develop a low-carbon economy through energy-substitution technology in China," Energy, Elsevier, vol. 261(PA).
    3. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    4. Yan, Bin & Wang, Feng & Dong, Mingru & Ren, Jing & Liu, Juan & Shan, Jing, 2022. "How do financial spatial structure and economic agglomeration affect carbon emission intensity? Theory extension and evidence from China," Economic Modelling, Elsevier, vol. 108(C).
    5. Miguel Rodríguez & Yolanda Pena-Boquete, 2013. "Mishandling carbon intensities," Working Papers 1302, Universidade de Vigo, Departamento de Economía Aplicada.
    6. Hu, Changshuai & Du, Dan & Huang, Junbing, 2023. "The driving effect of energy demand evolution: From the perspective of heterogeneity in technology," Energy, Elsevier, vol. 275(C).
    7. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    8. Edy Yusuf Agung Gunanto & Tri Wahyu & Jaka Aminata & Banatul Hayati, 2021. "Convergence CO2 Emission in ASEAN Countries: Augmented Green Solow Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 572-578.
    9. Nan, Shijing & Huo, Yuchen & You, Wanhai & Guo, Yawei, 2022. "Globalization spatial spillover effects and carbon emissions: What is the role of economic complexity?," Energy Economics, Elsevier, vol. 112(C).
    10. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    11. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    12. Anelí Bongers, 2020. "The Environmental Kuznets Curve and the Energy Mix: A Structural Estimation," Energies, MDPI, vol. 13(10), pages 1-21, May.
    13. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    14. Shah, Syed Ale Raza & Zhang, Qianxiao & Abbas, Jaffar & Balsalobre-Lorente, Daniel & Pilař, Ladislav, 2023. "Technology, Urbanization and Natural Gas Supply Matter for Carbon Neutrality: A New Evidence of Environmental Sustainability under the Prism of COP26," Resources Policy, Elsevier, vol. 82(C).
    15. Gutiérrez-López, Cristina & Castro, Paula & Tascón, María T., 2022. "How can firms' transition to a low-carbon economy affect the distance to default?," Research in International Business and Finance, Elsevier, vol. 62(C).
    16. Azam, Muhammad & Khan, Abdul Qayyum, 2016. "Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 556-567.
    17. Massimiliano Mazzanti & Antonio Musolesi, 2017. "The effect of Rio Convention and other structural breaks on long-run economic development-CO2 relationships," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 34(3), pages 389-405, December.
    18. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    19. Chang, Juin-Jen & Wang, Wei-Neng & Shieh, Jhy-Yuan, 2018. "Environmental rebounds/backfires: Macroeconomic implications for the promotion of environmentally-friendly products," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 35-68.
    20. Decai Tang & Yan Zhang & Brandon J. Bethel, 2019. "An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(8), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223012914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.