IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023641.html
   My bibliography  Save this article

Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control

Author

Listed:
  • Rodríguez, Fermín
  • Galarza, Ainhoa
  • Vasquez, Juan C.
  • Guerrero, Josep M.

Abstract

In recent years, the photovoltaic generation installed capacity has been steadily growing thanks to its inexhaustible and non-polluting characteristics. However, solar generators are strongly dependent on intermittent weather parameters, increasing power systems' uncertainty level. Forecasting models have arisen as a feasible solution to decreasing photovoltaic generators' uncertainty level, as they can produce accurate predictions. Traditionally, the vast majority of research studies have focused on the development of accurate prediction point forecasters. However, in recent years some researchers have suggested the concept of prediction interval forecasting, where not only an accurate prediction point but also the confidence level of a given prediction are computed to provide further information. This paper develops a new model for predicting photovoltaic generators' output power confidence interval 10 min ahead, based on deep learning, mathematical probability density functions and meteorological parameters. The model's accuracy has been validated with a real data series collected from Spanish meteorological stations. In addition, two error metrics, prediction interval coverage percentage and Skill score, are computed at a 95% confidence level to examine the model's accuracy. The prediction interval coverage percentage values are greater than the chosen confidence level, which means, as stated in the literature, the proposed model is well-founded.

Suggested Citation

  • Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023641
    DOI: 10.1016/j.energy.2021.122116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodríguez, Fermín & Fleetwood, Alice & Galarza, Ainhoa & Fontán, Luis, 2018. "Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control," Renewable Energy, Elsevier, vol. 126(C), pages 855-864.
    2. Yin, Linfei & Yu, Tao & Zhang, Xiaoshun & Yang, Bo, 2018. "Relaxed deep learning for real-time economic generation dispatch and control with unified time scale," Energy, Elsevier, vol. 149(C), pages 11-23.
    3. Ferlito, S. & Adinolfi, G. & Graditi, G., 2017. "Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production," Applied Energy, Elsevier, vol. 205(C), pages 116-129.
    4. Yan, Xingyu & Abbes, Dhaker & Francois, Bruno, 2017. "Uncertainty analysis for day ahead power reserve quantification in an urban microgrid including PV generators," Renewable Energy, Elsevier, vol. 106(C), pages 288-297.
    5. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    7. Ayvazoğluyüksel, Özge & Filik, Ümmühan Başaran, 2018. "Estimation methods of global solar radiation, cell temperature and solar power forecasting: A review and case study in Eskişehir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 639-653.
    8. Pedro, Hugo T.C. & Coimbra, Carlos F.M. & David, Mathieu & Lauret, Philippe, 2018. "Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 191-203.
    9. Prado, Francisco & Minutolo, Marcel C. & Kristjanpoller, Werner, 2020. "Forecasting based on an ensemble Autoregressive Moving Average - Adaptive neuro - Fuzzy inference system – Neural network - Genetic Algorithm Framework," Energy, Elsevier, vol. 197(C).
    10. Rodríguez, Fermín & Florez-Tapia, Ane M. & Fontán, Luis & Galarza, Ainhoa, 2020. "Very short-term wind power density forecasting through artificial neural networks for microgrid control," Renewable Energy, Elsevier, vol. 145(C), pages 1517-1527.
    11. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    12. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
    13. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Jiang, Lin, 2019. "Sensor network based PV power nowcasting with spatio-temporal preselection for grid-friendly control," Applied Energy, Elsevier, vol. 255(C).
    14. Fermín Rodríguez & Fernando Martín & Luis Fontán & Ainhoa Galarza, 2020. "Very Short-Term Load Forecaster Based on a Neural Network Technique for Smart Grid Control," Energies, MDPI, vol. 13(19), pages 1-19, October.
    15. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Dias, João Batista, 2019. "Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV," Energy Policy, Elsevier, vol. 127(C), pages 113-124.
    16. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
    17. Kaur, Amanpreet & Nonnenmacher, Lukas & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Benefits of solar forecasting for energy imbalance markets," Renewable Energy, Elsevier, vol. 86(C), pages 819-830.
    18. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    19. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    20. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    21. Jamal, Taskin & Carter, Craig & Schmidt, Thomas & Shafiullah, G.M. & Calais, Martina & Urmee, Tania, 2019. "An energy flow simulation tool for incorporating short-term PV forecasting in a diesel-PV-battery off-grid power supply system," Applied Energy, Elsevier, vol. 254(C).
    22. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    23. Sharma, Vishal & Yang, Dazhi & Walsh, Wilfred & Reindl, Thomas, 2016. "Short term solar irradiance forecasting using a mixed wavelet neural network," Renewable Energy, Elsevier, vol. 90(C), pages 481-492.
    24. David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
    25. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    26. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
    27. Wustenhagen, Rolf & Bilharz, Michael, 2006. "Green energy market development in Germany: effective public policy and emerging customer demand," Energy Policy, Elsevier, vol. 34(13), pages 1681-1696, September.
    28. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    29. Li, Yanting & He, Yong & Su, Yan & Shu, Lianjie, 2016. "Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines," Applied Energy, Elsevier, vol. 180(C), pages 392-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingling Li & Jiarui Pei & Qiang Shen, 2023. "A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind–Thermal Power Microgrids," Energies, MDPI, vol. 16(10), pages 1-23, May.
    2. Richard Guanoluisa & Diego Arcos-Aviles & Marco Flores-Calero & Wilmar Martinez & Francesc Guinjoan, 2023. "Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    3. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    4. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    2. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    3. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    4. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    5. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    6. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    7. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    9. Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
    10. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    11. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    12. Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
    13. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    14. Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
    15. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
    16. Meng, Anbo & Xie, Zhifeng & Luo, Jianqiang & Zeng, Ying & Xu, Xuancong & Li, Yidian & Wu, Zhenbo & Zhang, Zhan & Zhu, Jianbin & Xian, Zikang & Li, Chen & Yan, Baiping & Yin, Hao, 2023. "An adaptive variational mode decomposition for wind power prediction using convolutional block attention deep learning network," Energy, Elsevier, vol. 282(C).
    17. Rodríguez-Benítez, Francisco J. & López-Cuesta, Miguel & Arbizu-Barrena, Clara & Fernández-León, María M. & Pamos-Ureña, Miguel Á. & Tovar-Pescador, Joaquín & Santos-Alamillos, Francisco J. & Pozo-Váz, 2021. "Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery," Applied Energy, Elsevier, vol. 292(C).
    18. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Guilherme Fonseca Bassous & Rodrigo Flora Calili & Carlos Hall Barbosa, 2021. "Development of a Low-Cost Data Acquisition System for Very Short-Term Photovoltaic Power Forecasting," Energies, MDPI, vol. 14(19), pages 1-28, September.
    20. du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.