IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp118-129.html
   My bibliography  Save this article

Can hydropower develop as expected in China? A scenario analysis based on system dynamics model

Author

Listed:
  • Liu, Dunnan
  • Zhao, Weidong
  • Li, Zhihao
  • Xu, Xiaofeng
  • Xiao, Bowen
  • Niu, Dongxiao

Abstract

Recently, Chinese government has determined to guide the energy structure adjustment. The rapid development of hydropower is still important for the low-carbon transition. Therefore, we established a scenario-based system dynamics model considering emission trade scheme (ETS) and government policy. 4 scenarios (No ETS & policy; Only ETS; Only policy; Both ETS & policy) were established to investigate the development path of hydropower in China. In 2030, the installed-capacity of conventional hydropower will reach 364.2, 416.1, 428.7 and 470.5 million kW under four scenarios; and the installed-capacity of pumped-storage power will be 75.8, 85.6, 95.5 and 100.8 million kW under four scenarios. Note that, the development paths of installed-capacity and power generation of pumped-storage power and conventional hydropower are characterized by oblate “S-shaped” curves. By analyzing the differences between scenario 2 (Only ETS) and scenario 3 (Only policy), we can conclude that the effect of policy support on the development of hydropower is larger than the ETS. The conclusions derived from sensitivity analysis show that the changes in policy intensity have greater impact than changes in ETS price. In brief, all the results and discussions can help Chinese government shape a development plan for hydropower generation.

Suggested Citation

  • Liu, Dunnan & Zhao, Weidong & Li, Zhihao & Xu, Xiaofeng & Xiao, Bowen & Niu, Dongxiao, 2018. "Can hydropower develop as expected in China? A scenario analysis based on system dynamics model," Energy, Elsevier, vol. 161(C), pages 118-129.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:118-129
    DOI: 10.1016/j.energy.2018.07.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    2. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    3. Tsai, Miao-Shan & Chang, Ssu-Li, 2015. "Taiwan’s 2050 low carbon development roadmap: An evaluation with the MARKAL model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 178-191.
    4. Contaldi, Mario & Gracceva, Francesco & Tosato, Giancarlo, 2007. "Evaluation of green-certificates policies using the MARKAL-MACRO-Italy model," Energy Policy, Elsevier, vol. 35(2), pages 797-808, February.
    5. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko, 2015. "From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels," Applied Energy, Elsevier, vol. 140(C), pages 196-209.
    6. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    7. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    8. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    9. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
    10. Liu, Ximei & Zeng, Ming, 2017. "Renewable energy investment risk evaluation model based on system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 782-788.
    11. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
    12. Ge, Feng-Long & Fan, Ying, 2013. "A system dynamics model of coordinated development of central and provincial economy and oil enterprises," Energy Policy, Elsevier, vol. 60(C), pages 41-51.
    13. Klaassen, Ger & Riahi, Keywan, 2007. "Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO," Energy Policy, Elsevier, vol. 35(2), pages 815-827, February.
    14. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    15. Liu, Gengyuan & Yang, Zhifeng & Fath, Brian D. & Shi, Lei & Ulgiati, Sergio, 2017. "Time and space model of urban pollution migration: Economy-energy-environment nexus network," Applied Energy, Elsevier, vol. 186(P2), pages 96-114.
    16. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    17. Hermeling, Claudia & Löschel, Andreas & Mennel, Tim, 2013. "A new robustness analysis for climate policy evaluations: A CGE application for the EU 2020 targets," Energy Policy, Elsevier, vol. 55(C), pages 27-35.
    18. Chilkoti, Vinod & Bolisetti, Tirupati & Balachandar, Ram, 2017. "Climate change impact assessment on hydropower generation using multi-model climate ensemble," Renewable Energy, Elsevier, vol. 109(C), pages 510-517.
    19. Wu, X.F. & Chen, G.Q., 2017. "Energy use by Chinese economy: A systems cross-scale input-output analysis," Energy Policy, Elsevier, vol. 108(C), pages 81-90.
    20. Kong, Yigang & Wang, Jie & Kong, Zhigang & Song, Furong & Liu, Zhiqi & Wei, Congmei, 2015. "Small hydropower in China: The survey and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 425-433.
    21. Aslani, Alireza & Helo, Petri & Naaranoja, Marja, 2014. "Role of renewable energy policies in energy dependency in Finland: System dynamics approach," Applied Energy, Elsevier, vol. 113(C), pages 758-765.
    22. Asafu-Adjaye, John & Byrne, Dominic & Alvarez, Maximiliano, 2016. "Economic growth, fossil fuel and non-fossil consumption: A Pooled Mean Group analysis using proxies for capital," Energy Economics, Elsevier, vol. 60(C), pages 345-356.
    23. Zhou, Sheng & Tong, Qing & Yu, Sha & Wang, Yu & Chai, Qimin & Zhang, Xiliang, 2012. "Role of non-fossil energy in meeting China's energy and climate target for 2020," Energy Policy, Elsevier, vol. 51(C), pages 14-19.
    24. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    25. Chang, XiaoLin & Liu, Xinghong & Zhou, Wei, 2010. "Hydropower in China at present and its further development," Energy, Elsevier, vol. 35(11), pages 4400-4406.
    26. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Vigants, Girts & Blumberga, Dagnija, 2016. "System dynamics model analysis of pathway to 4th generation district heating in Latvia," Energy, Elsevier, vol. 110(C), pages 85-94.
    27. Rasmussen, Laura Vang & Rasmussen, Kjeld & Reenberg, Anette & Proud, Simon, 2012. "A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel," Agricultural Systems, Elsevier, vol. 107(C), pages 56-64.
    28. Minx, Jan C. & Callaghan, Max & Lamb, William F. & Garard, Jennifer & Edenhofer, Ottmar, 2017. "Learning about climate change solutions in the IPCC and beyond," Environmental Science & Policy, Elsevier, vol. 77(C), pages 252-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xiuqin & Zhao, Jinsong & Zhang, Dayong & Lee, Wen-Chieh & Yu, Chin-Hsien, 2022. "Resource misallocation and the development of hydropower industry," Applied Energy, Elsevier, vol. 306(PA).
    2. Sheng Chen & Gaohui Li & Delou Wang & Xingtao Wang & Jian Zhang & Xiaodong Yu, 2019. "Impact of Tail Water Fluctuation on Turbine Start-Up and Optimized Regulation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    3. Li, Tianxiao & Li, Zheng & Li, Weiqi, 2020. "Scenarios analysis on the cross-region integrating of renewable power based on a long-period cost-optimization power planning model," Renewable Energy, Elsevier, vol. 156(C), pages 851-863.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmaieli, M. & Ahmadian, M., 2018. "The effect of research and development incentive on wind power investment, a system dynamics approach," Renewable Energy, Elsevier, vol. 126(C), pages 765-773.
    2. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    3. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    4. Ko, Fu-Kuang & Huang, Chang-Bin & Tseng, Pei-Ying & Lin, Chung-Han & Zheng, Bo-Yan & Chiu, Hsiu-Mei, 2010. "Long-term CO2 emissions reduction target and scenarios of power sector in Taiwan," Energy Policy, Elsevier, vol. 38(1), pages 288-300, January.
    5. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    6. Pascal da Costa & Wenhui Tian, 2015. "A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050," Working Papers hal-01026302, HAL.
    7. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    8. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    9. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    10. Shmelev, Stanislav E. & van den Bergh, Jeroen C.J.M., 2016. "Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 679-691.
    11. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    12. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    13. Zhang, Dongyu & Liu, Gengyuan & Chen, Caocao & Zhang, Yan & Hao, Yan & Casazza, Marco, 2019. "Medium-to-long-term coupled strategies for energy efficiency and greenhouse gas emissions reduction in Beijing (China)," Energy Policy, Elsevier, vol. 127(C), pages 350-360.
    14. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    15. Shakouri G., H. & Aliakbarisani, S., 2016. "At what valuation of sustainability can we abandon fossil fuels? A comprehensive multistage decision support model for electricity planning," Energy, Elsevier, vol. 107(C), pages 60-77.
    16. Huan Wang & Wenying Chen & Hongjun Zhang & Nan Li, 2020. "Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target," Climatic Change, Springer, vol. 162(4), pages 1843-1856, October.
    17. Abba, Z.Y.I. & Balta-Ozkan, N. & Hart, P., 2022. "A holistic risk management framework for renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Pakere, Ieva & Gravelsins, Armands & Lauka, Dace & Bazbauers, Gatis & Blumberga, Dagnija, 2021. "Linking energy efficiency policies toward 4th generation district heating system," Energy, Elsevier, vol. 234(C).
    19. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik, 2023. "Long term impacts of climate change on the transition towards renewables in Switzerland," Energy, Elsevier, vol. 263(PE).
    20. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:118-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.