IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v94y2016icp285-294.html
   My bibliography  Save this article

Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study

Author

Listed:
  • Ally, Jamie
  • Pryor, Trevor

Abstract

The transit authority in Perth, Western Australia, has put several alternative fuel buses, including diesel-electric hybrid and hydrogen fuel cell buses, into revenue service over the years alongside conventional diesel and natural gas buses. Primary data from this fleet is used to construct a Life Cycle Cost (LCC) model, providing an empirical LCC result. The model is then used to forecast possible scenarios using cost estimates for next generation technologies. The methodology follows the Australian/New Zealand Standard for Life Cycle Costing, AS/NZS 4536:1999. The model outputs a dollar value in real terms that represents the LCC of each bus transportation technology. The study finds that Diesel buses deliver the lowest Total Cost of Ownership (TCO). The diesel-electric hybrid bus was found to have a TCO that is about 10% higher than conventional diesel. The premium to implement and operate a hydrogen bus, even if industry targets are attained, is still substantially greater than the TCO of a conventional diesel bus, unless a very large increase in the diesel fuel price occurs. However, the hybrid and hydrogen technologies are still very young in comparison to diesel and economies of scale are yet to be realised.

Suggested Citation

  • Ally, Jamie & Pryor, Trevor, 2016. "Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study," Energy Policy, Elsevier, vol. 94(C), pages 285-294.
  • Handle: RePEc:eee:enepol:v:94:y:2016:i:c:p:285-294
    DOI: 10.1016/j.enpol.2016.03.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516301422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.03.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Shikuan & Chang, Ming-Jen, 2015. "Capital control and exchange rate volatility," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 167-177.
    2. Li, Wu, 2015. "The Exchange Function and A Dynamic Exchange Model," MPRA Paper 68529, University Library of Munich, Germany.
    3. Colin J. Cockroft & Anthony D. Owen, 2007. "The Economics of Hydrogen Fuel Cell Buses," The Economic Record, The Economic Society of Australia, vol. 83(263), pages 359-370, December.
    4. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.
    2. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    3. Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
    4. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).
    5. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    6. Martin Khzouz & Evangelos I. Gkanas & Jia Shao & Farooq Sher & Dmytro Beherskyi & Ahmad El-Kharouf & Mansour Al Qubeissi, 2020. "Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology," Energies, MDPI, vol. 13(15), pages 1-19, July.
    7. Li, Yanfei & Kimura, Shigeru, 2021. "Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios," Energy Policy, Elsevier, vol. 148(PB).
    8. Roberto F. Aguilera & Julian Inchauspe, 2022. "An overview of hydrogen prospects: Economic, technical and policy considerations," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 164-186, January.
    9. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Rohit Bansal & Bahman Shabani & Sidhartha Harichandan, 2023. "Overview of hydrogen economy in Australia," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    10. Penny Atkins & Gareth Milton & Andrew Atkins & Robert Morgan, 2021. "A Local Ecosystem Assessment of the Potential for Net Negative Heavy-Duty Truck Greenhouse Gas Emissions through Biomethane Upcycling," Energies, MDPI, vol. 14(4), pages 1-22, February.
    11. Klaus Kivekäs & Antti Lajunen & Jari Vepsäläinen & Kari Tammi, 2018. "City Bus Powertrain Comparison: Driving Cycle Variation and Passenger Load Sensitivity Analysis," Energies, MDPI, vol. 11(7), pages 1-26, July.
    12. Karaca, Ali Erdogan & Dincer, Ibrahim, 2021. "A hybrid compressed natural gas-pneumatic system as a powering option for buses: A comparative assessment," Energy, Elsevier, vol. 230(C).
    13. Yeongmin Kwon & Suji Kim & Hyungjoo Kim & Jihye Byun, 2020. "What Attributes Do Passengers Value in Electrified Buses?," Energies, MDPI, vol. 13(10), pages 1-14, May.
    14. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    15. Rillo, E. & Gandiglio, M. & Lanzini, A. & Bobba, S. & Santarelli, M. & Blengini, G., 2017. "Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant," Energy, Elsevier, vol. 126(C), pages 585-602.
    16. SK Safdar Hossain & Bamidele Victor Ayodele & Syed Sadiq Ali & Chin Kui Cheng & Siti Indati Mustapa, 2022. "Comparative Analysis of Support Vector Machine Regression and Gaussian Process Regression in Modeling Hydrogen Production from Waste Effluent," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    17. Hensher, David A., 2021. "The case for negotiated contracts under the transition to a green bus fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 255-269.
    18. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    19. Bitzan, John D. & Ripplinger, David G., 2016. "Public transit and alternative fuels – The costs associated with using biodiesel and CNG in comparison to diesel for U.S. public transit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 17-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    2. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    3. Vincent Brémond & Emmanuel Hache & Tovonony Razafindrabe, 2016. "The Oil Price and Exchange Rate Relationship Revisited: A time-varying VAR parameter approach," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(1), pages 97-131, June.
    4. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    5. Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014. "Are there gains from pooling real-time oil price forecasts?," Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
    6. Marco Del Negro & Michele Lenza & Giorgio E. Primiceri & Andrea Tambalotti, 2020. "What's Up with the Phillips Curve?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 51(1 (Spring), pages 301-373.
    7. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    8. Jacks, David S. & Stuermer, Martin, 2020. "What drives commodity price booms and busts?," Energy Economics, Elsevier, vol. 85(C).
    9. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    10. Janet L. Yellen, 2015. "Inflation Dynamics and Monetary Policy : A speech at the Philip Gamble Memorial Lecture, University of Massachusetts, Amherst, Amherst, Massachusetts, September 24, 2015," Speech 863, Board of Governors of the Federal Reserve System (U.S.).
    11. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    12. Beckmann, Joscha & Czudaj, Robert L. & Arora, Vipin, 2020. "The relationship between oil prices and exchange rates: Revisiting theory and evidence," Energy Economics, Elsevier, vol. 88(C).
    13. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    14. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    15. Cenedese, Gino & Mallucci, Enrico, 2016. "What moves international stock and bond markets?," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 94-113.
    16. Shirai, Daichi, 2016. "Persistence and Amplification of Financial Frictions," MPRA Paper 72187, University Library of Munich, Germany.
    17. Aleksandra Riedl & Julia Wörz, 2018. "A simple approach to nowcasting GDP growth in CESEE economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/18, pages 56-74.
    18. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
    19. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    20. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    21. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    22. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2022. "Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data," Energies, MDPI, vol. 15(22), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:94:y:2016:i:c:p:285-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.