IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v66y2022i1p164-186.html
   My bibliography  Save this article

An overview of hydrogen prospects: Economic, technical and policy considerations

Author

Listed:
  • Roberto F. Aguilera
  • Julian Inchauspe

Abstract

Hydrogen is expected to play a role in the future low‐carbon economy as an energy carrier, but its market penetration remains to be seen. Much of the existing literature generally focuses on comparison of marginal production costs and prices to make rather optimistic projections. This study argues that such analysis is myopic as important barriers are ignored. Following Porter’s five‐force approach, we methodologically identify the economic market forces that shape the development of hydrogen markets, and discuss key obstacles in the supply chain. Using evidence of available hydrogen technologies and costs, the distribution network is identified as a major fixed‐investment barrier to market entry, but it is argued that much of it could be overcome if natural gas infrastructure and technology is shared with the hydrogen sector. Natural gas, in turn, is projected to function as a transition fuel under current carbon emissions targets. This study finds that policy costs needed to promote hydrogen to achieve environmental goals can be substantially reduced if government and private investment decisions strategically focus on synergies with natural gas. The possible formulation of such policies is discussed using Australia’s hydrogen industry as a case study.

Suggested Citation

  • Roberto F. Aguilera & Julian Inchauspe, 2022. "An overview of hydrogen prospects: Economic, technical and policy considerations," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 164-186, January.
  • Handle: RePEc:bla:ajarec:v:66:y:2022:i:1:p:164-186
    DOI: 10.1111/1467-8489.12458
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-8489.12458
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-8489.12458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    2. Roberto F. Aguilera & Roberto Aguilera, 2020. "Revisiting the role of natural gas as a transition fuel," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 73-80, July.
    3. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    4. Roberto F. Aguilera & Roberto Aguilera, 2018. "Revisiting the long-run energy mix with the global energy market model (GEM)," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 31(1), pages 221-227, May.
    5. Nistor, Silviu & Dave, Saraansh & Fan, Zhong & Sooriyabandara, Mahesh, 2016. "Technical and economic analysis of hydrogen refuelling," Applied Energy, Elsevier, vol. 167(C), pages 211-220.
    6. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    7. Hwang, Jenn-Jiang, 2013. "Sustainability study of hydrogen pathways for fuel cell vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 220-229.
    8. Ally, Jamie & Pryor, Trevor, 2016. "Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study," Energy Policy, Elsevier, vol. 94(C), pages 285-294.
    9. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Olfa Tlili & Christine Mansilla & David Frimat & Yannick Perez, 2019. "Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan," Post-Print hal-02265824, HAL.
    11. Le Duigou, Alain & Quéméré, Marie-Marguerite & Marion, Pierre & Menanteau, Philippe & Decarre, Sandrine & Sinegre, Laure & Nadau, Lionel & Rastetter, Aline & Cuni, Aude & Mulard, Philippe & Antoine, L, 2013. "Hydrogen pathways in France: Results of the HyFrance3 Project," Energy Policy, Elsevier, vol. 62(C), pages 1562-1569.
    12. Ogden, Joan M., 2018. "Prospects for Hydrogen in the Future Energy System," Institute of Transportation Studies, Working Paper Series qt52s28641, Institute of Transportation Studies, UC Davis.
    13. Kast, James & Morrison, Geoffrey & Gangloff, John J. & Vijayagopal, Ram & Marcinkoski, Jason, 2018. "Designing hydrogen fuel cell electric trucks in a diverse medium and heavy duty market," Research in Transportation Economics, Elsevier, vol. 70(C), pages 139-147.
    14. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumbrell, Nikki P. & Wheeler, Sarah Ann & Zuo, Alec & Adamson, David, 2022. "Public willingness to make trade-offs in the development of a hydrogen industry in Australia," Energy Policy, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    2. Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
    3. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    4. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    7. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    8. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    10. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    11. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    12. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    14. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    16. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    17. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
    18. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    19. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    20. Xun, Qian & Murgovski, Nikolce & Liu, Yujing, 2022. "Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks," Applied Energy, Elsevier, vol. 320(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:66:y:2022:i:1:p:164-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.