IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10208-d634339.html
   My bibliography  Save this article

Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017

Author

Listed:
  • Jong-Hyun Kim

    (Department of Energy Resources Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea)

  • Yong-Gil Lee

    (Department of Energy Resources Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea)

Abstract

In recent years, innovation of alternative energy technologies to manage climate change has become an important goal worldwide. South Korea has been focusing on the innovation of alternative energy technologies through its investments and innovation systematic capabilities. This study quantitatively examines the effect of national innovation systems that are designed to improve the performance of innovation. To do so, this study analyzes the effects of financial support from the national research and development (R&D) project, and collaborations between institutions regarding the national innovation systems on patent performance based on citation count, which is a useful indicator of patent quality. Specifically, this study analyzes the effects of financial support from the national R&D project, as well as collaborations between universities, industries, and the government regarding patent performance using the patent data of South Korea. These data were used in congruence with a hurdle negative binomial model, using data from 2010 to 2017. Consequently, this study establishes that financial supports from national R&D project are generally inefficient. The relational aspects of the South Korean innovation systems are also generally inefficient, while collaborations between universities and industries contribute toward improving the performance of alternative energy patents.

Suggested Citation

  • Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10208-:d:634339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Dong Wook & Chang, Hyun Joon, 2012. "Experience curve analysis on South Korean nuclear technology and comparative analysis with South Korean renewable technologies," Energy Policy, Elsevier, vol. 40(C), pages 361-373.
    2. Abiodun Adegbile & David Sarpong & Dirk Meissner, 2017. "Strategic Foresight for Innovation Management: A Review and Research Agenda," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 1-34, August.
    3. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    4. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    5. Zeileis, Achim & Kleiber, Christian & Jackman, Simon, 2008. "Regression Models for Count Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i08).
    6. Henderson, Rebecca M. & Newell, Richard G. (ed.), 2011. "Accelerating Energy Innovation," National Bureau of Economic Research Books, University of Chicago Press, number 9780226326832, December.
    7. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    8. Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006. "Academic vs. industry patenting: an in-depth analysis of what determines patent value," ULB Institutional Repository 2013/6197, ULB -- Universite Libre de Bruxelles.
    9. Baier-Fuentes, Hugo & Guerrero, Maribel & Amorós, José Ernesto, 2021. "Does triple helix collaboration matter for the early internationalisation of technology-based firms in emerging Economies?," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    10. Jong-Hyun Kim & Yong-Gil Lee, 2020. "Patent Analysis on the Development of the Shale Petroleum Industry Based on a Network of Technological Indices," Energies, MDPI, vol. 13(24), pages 1-15, December.
    11. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    12. Jensen, Morten Berg & Johnson, Bjorn & Lorenz, Edward & Lundvall, Bengt Ake, 2007. "Forms of knowledge and modes of innovation," Research Policy, Elsevier, vol. 36(5), pages 680-693, June.
    13. Jungwon Yoon & Han Woo Park, 2017. "Triple helix dynamics of South Korea’s innovation system: a network analysis of inter-regional technological collaborations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 989-1007, May.
    14. Hernández-Trasobares, Alejandro & Murillo-Luna, Josefina L., 2020. "The effect of triple helix cooperation on business innovation: The case of Spain," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    15. Jong-Hyun Kim & Yong-Gil Lee, 2017. "Analyzing the Learning Path of US Shale Players by Using the Learning Curve Method," Sustainability, MDPI, vol. 9(12), pages 1-8, December.
    16. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    17. Yong-Gil Lee & Jeong-Dong Lee & Yong-Il Song & Se-Jun Lee, 2007. "An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 27-39, January.
    18. Lee, Young Hoon & Kim, YoungJun, 2016. "Analyzing interaction in R&D networks using the Triple Helix method: Evidence from industrial R&D programs in Korean government," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 93-105.
    19. Jungwon Yoon, 2015. "The evolution of South Korea’s innovation system: moving towards the triple helix model?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 265-293, July.
    20. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    21. Dirk Czarnitzki & Bernd Ebersberger & Andreas Fier, 2007. "The relationship between R&D collaboration, subsidies and R&D performance: Empirical evidence from Finland and Germany," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(7), pages 1347-1366.
    22. Jong-Hyun Kim & Yong-Gil Lee, 2020. "Progress of Technological Innovation of the United States’ Shale Petroleum Industry Based on Patent Data Association Rules," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    23. A. Baccini & L. Barabesi & M. Cioni & C. Pisani, 2014. "Crossing the hurdle: the determinants of individual scientific performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 2035-2062, December.
    24. Rebecca M. Henderson & Richard G. Newell, 2011. "Accelerating Energy Innovation: Insights from Multiple Sectors," NBER Books, National Bureau of Economic Research, Inc, number hend09-1, May.
    25. Loet Leydesdorff & Yuan Sun, 2009. "National and international dimensions of the Triple Helix in Japan: University–industry–government versus international coauthorship relations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(4), pages 778-788, April.
    26. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    27. Loet Leydesdorff & Henry Etzkowitz, 1998. "The Triple Helix as a model for innovation studies," Science and Public Policy, Oxford University Press, vol. 25(3), pages 195-203, June.
    28. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    29. Park, Han Woo & Leydesdorff, Loet, 2010. "Longitudinal trends in networks of university-industry-government relations in South Korea: The role of programmatic incentives," Research Policy, Elsevier, vol. 39(5), pages 640-649, June.
    30. Xiao-Ping Lei & Zhi-Yun Zhao & Xu Zhang & Dar-Zen Chen & Mu-Hsuan Huang & Yun-Hua Zhao, 2012. "The inventive activities and collaboration pattern of university–industry–government in China based on patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 231-251, January.
    31. Li, Yin & Arora, Sanjay & Youtie, Jan & Shapira, Philip, 2018. "Using web mining to explore Triple Helix influences on growth in small and mid-size firms," Technovation, Elsevier, vol. 76, pages 3-14.
    32. Richard G. Newell, 2011. "The Energy Innovation System: A Historical Perspective," NBER Chapters, in: Accelerating Energy Innovation: Insights from Multiple Sectors, pages 25-47, National Bureau of Economic Research, Inc.
    33. Jiang, Renai & Jefferson, Gary H. & Zucker, Sam & Li, Lintong, 2019. "The role of research and ownership collaboration in generating patent quality: China-U.S comparisons," China Economic Review, Elsevier, vol. 58(C).
    34. Brem, Alexander & Radziwon, Agnieszka, 2017. "Efficient Triple Helix collaboration fostering local niche innovation projects – A case from Denmark," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 130-141.
    35. Huang, Mu-Hsuan & Chen, Dar-Zen, 2017. "How can academic innovation performance in university–industry collaboration be improved?," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 210-215.
    36. Sapsalis, Eleftherios & van Pottelsberghe de la Potterie, Bruno & Navon, Ran, 2006. "Academic versus industry patenting: An in-depth analysis of what determines patent value," Research Policy, Elsevier, vol. 35(10), pages 1631-1645, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jie & Huang, Shoujun & Kamran, Hafiz Waqas, 2023. "Empowering sustainability practices through energy transition for sustainable development goal 7: The role of energy patents and natural resources among European Union economies through advanced panel," Energy Policy, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    2. Arranz, Nieves & Arroyabe, Marta F. & Schumann, Martin, 2020. "The role of NPOs and international actors in the national innovation system: A network-based approach," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    3. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    4. Fabiano, Gianluca & Marcellusi, Andrea & Favato, Giampiero, 2021. "R versus D, from knowledge creation to value appropriation: Ownership of patents filed by European biotechnology founders," Technovation, Elsevier, vol. 108(C).
    5. Yutao Sun & Chen Zhang & Robert A. W. Kok, 2020. "The role of research outcome quality in the relationship between university research collaboration and technology transfer: empirical results from China," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1003-1026, February.
    6. Weimin Kang & Shuliang Zhao & Wei Song & Tao Zhuang, 2019. "Triple helix in the science and technology innovation centers of China from the perspective of mutual information: a comparative study between Beijing and Shanghai," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 921-940, March.
    7. Tao, Zhuang & Shuliang, Zhao, 2022. "Collaborative innovation relationship in Yangtze River Delta of China: Subjects collaboration and spatial correlation," Technology in Society, Elsevier, vol. 69(C).
    8. Pieter E. Stek, 2020. "Mapping high R&D city-regions worldwide: a patent heat map approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 279-296, February.
    9. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
    10. Lee, Young Hoon & Kim, YoungJun, 2016. "Analyzing interaction in R&D networks using the Triple Helix method: Evidence from industrial R&D programs in Korean government," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 93-105.
    11. Tao Zhuang & Zhixia Zhou & Qingjun Li, 2021. "University‐industry‐government triple helix relationship and regional innovation efficiency in China," Growth and Change, Wiley Blackwell, vol. 52(1), pages 349-370, March.
    12. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    13. Robert K. Perrons & Adam B. Jaffe & Trinh Le, 2020. "Tracing the Linkages Between Scientific Research and Energy Innovations: A Comparison of Clean and Dirty Technologies," NBER Working Papers 27777, National Bureau of Economic Research, Inc.
    14. Winskel, Mark & Radcliffe, Jonathan & Skea, Jim & Wang, Xinxin, 2014. "Remaking the UK's energy technology innovation system: From the margins to the mainstream," Energy Policy, Elsevier, vol. 68(C), pages 591-602.
    15. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012. "The nexus between science and industry: evidence from faculty inventions," The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
    16. Jong-Hyun Kim & Yong-Gil Lee, 2020. "Patent Analysis on the Development of the Shale Petroleum Industry Based on a Network of Technological Indices," Energies, MDPI, vol. 13(24), pages 1-15, December.
    17. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    18. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    19. Pieter Stek & Marina Geenhuizen, 2015. "Measuring the dynamics of an innovation system using patent data: a case study of South Korea, 2001–2010," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1325-1343, July.
    20. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    21. Wei Jin & ZhongXiang Zhang, 2017. "The tragedy of product homogeneity and knowledge non-spillovers: explaining the slow pace of energy technological progress," Annals of Operations Research, Springer, vol. 255(1), pages 639-661, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10208-:d:634339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.