IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v159y2020ics004016252031009x.html
   My bibliography  Save this article

The role of NPOs and international actors in the national innovation system: A network-based approach

Author

Listed:
  • Arranz, Nieves
  • Arroyabe, Marta F.
  • Schumann, Martin

Abstract

This paper conducts an explorative analysis of the UK's nanotechnology research collaboration network to understand the contributions of the different institutions in the development and generation of knowledge. Framed in the National Innovation System (NIS) and the Triple Helix (TH) model literature, this paper makes use of social network analysis (SNA) tools to identify the role and involvement of different institutional actors in the interactions and collaborations within the nanotechnology network. Building on the traditional university–industry–government three-helix interaction model, our paper includes two extra dimensions in the model to account for the increase in international collaboration and the increasingly important role of non-profit organizations (NPOs) in knowledge generation. In this way, our paper responds to recent calls to adapt the traditional NIS models to reflect the new realities of scientific collaboration.

Suggested Citation

  • Arranz, Nieves & Arroyabe, Marta F. & Schumann, Martin, 2020. "The role of NPOs and international actors in the national innovation system: A network-based approach," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:tefoso:v:159:y:2020:i:c:s004016252031009x
    DOI: 10.1016/j.techfore.2020.120183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016252031009X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. fyvie, Claire & Ager, Alastair, 1999. "NGOs and Innovation: Organizational Characteristics and Constraints in Development Assistance Work in The Gambia," World Development, Elsevier, vol. 27(8), pages 1383-1395, August.
    3. Bengt-Åke Lundvall, 2007. "National Innovation Systems—Analytical Concept and Development Tool," Industry and Innovation, Taylor & Francis Journals, vol. 14(1), pages 95-119.
    4. Rothaermel, Frank T. & Thursby, Marie, 2005. "University-incubator firm knowledge flows: assessing their impact on incubator firm performance," Research Policy, Elsevier, vol. 34(3), pages 305-320, April.
    5. Michael L. Darby & Lynne G. Zucker, 2010. "Grilichesian Breakthroughs: Inventions of Methods of Inventing and Firm Entry in Nanotechnology," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 143-164, National Bureau of Economic Research, Inc.
    6. Ki-Seok Kwon & Han Woo Park & Minho So & Loet Leydesdorff, 2012. "Has globalization strengthened South Korea’s national research system? National and international dynamics of the Triple Helix of scientific co-authorship relationships in South Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 163-176, January.
    7. Susan Christopherson & Michael Kitson & Jonathan Michie, 2008. "Innovation, networks and knowledge exchange," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 1(2), pages 165-173.
    8. Federico Munari & Laura Toschi, 2011. "Do venture capitalists have a bias against investment in academic spin-offs? Evidence from the micro- and nanotechnology sector in the UK," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 20(2), pages 397-432, April.
    9. Gouvea, Raul & Kassicieh, Sul & Montoya, M.J.R., 2013. "Using the quadruple helix to design strategies for the green economy," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 221-230.
    10. Leydesdorff, Loet & Meyer, Martin, 2006. "Triple Helix indicators of knowledge-based innovation systems: Introduction to the special issue," Research Policy, Elsevier, vol. 35(10), pages 1441-1449, December.
    11. Kourula, Arno, 2010. "Corporate engagement with non-governmental organizations in different institutional contexts--A case study of a forest products company," Journal of World Business, Elsevier, vol. 45(4), pages 395-404, October.
    12. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    13. Wonglimpiyarat, Jarunee, 2016. "Exploring strategic venture capital financing with Silicon Valley style," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 80-89.
    14. Al-Tabbaa, Omar & Leach, Desmond & Khan, Zaheer, 2019. "Examining alliance management capabilities in cross-sector collaborative partnerships," Journal of Business Research, Elsevier, vol. 101(C), pages 268-284.
    15. Cantner, Uwe & Rake, Bastian, 2014. "International research networks in pharmaceuticals: Structure and dynamics," Research Policy, Elsevier, vol. 43(2), pages 333-348.
    16. Lee, Young Hoon & Kim, YoungJun, 2016. "Analyzing interaction in R&D networks using the Triple Helix method: Evidence from industrial R&D programs in Korean government," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 93-105.
    17. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    18. Guerrero, Maribel & Urbano, David, 2017. "The impact of Triple Helix agents on entrepreneurial innovations' performance: An inside look at enterprises located in an emerging economy," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 294-309.
    19. Kapetaniou, Chrystalla & Lee, Soo Hee, 2017. "A framework for assessing the performance of universities: The case of Cyprus," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 169-180.
    20. Doh, Jonathan P. & Teegen, Hildy, 2002. "Nongovernmental organizations as institutional actors in international business: theory and implications," International Business Review, Elsevier, vol. 11(6), pages 665-684, December.
    21. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    22. Yin Li & Jan Youtie & Philip Shapira, 2015. "Why do technology firms publish scientific papers? The strategic use of science by small and midsize enterprises in nanotechnology," The Journal of Technology Transfer, Springer, vol. 40(6), pages 1016-1033, December.
    23. Brouwer, Erik & Kleinknecht, Alfred, 1999. "Innovative output, and a firm's propensity to patent.: An exploration of CIS micro data," Research Policy, Elsevier, vol. 28(6), pages 615-624, August.
    24. Wagner, Caroline S. & Whetsell, Travis A. & Mukherjee, Satyam, 2019. "International research collaboration: Novelty, conventionality, and atypicality in knowledge recombination," Research Policy, Elsevier, vol. 48(5), pages 1260-1270.
    25. Wen, Jiang & Kobayashi, Shinichi, 2001. "Exploring collaborative R&D network:: some new evidence in Japan," Research Policy, Elsevier, vol. 30(8), pages 1309-1319, October.
    26. Guan, Jiancheng & Zhao, Qingjun, 2013. "The impact of university–industry collaboration networks on innovation in nanobiopharmaceuticals," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1271-1286.
    27. Nelson, Andrew J., 2009. "Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion," Research Policy, Elsevier, vol. 38(6), pages 994-1005, July.
    28. Loet Leydesdorff & Yuan Sun, 2009. "National and international dimensions of the Triple Helix in Japan: University–industry–government versus international coauthorship relations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(4), pages 778-788, April.
    29. repec:adr:anecst:y:2005:i:79-80:p:06 is not listed on IDEAS
    30. Jerry Thursby & Marie Thursby, 2011. "University-industry linkages in nanotechnology and biotechnology: evidence on collaborative patterns for new methods of inventing," The Journal of Technology Transfer, Springer, vol. 36(6), pages 605-623, December.
    31. Chen, Shih-Hsin & Lin, Wei-Ting, 2017. "The dynamic role of universities in developing an emerging sector: a case study of the biotechnology sector," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 283-297.
    32. Park, Han Woo & Leydesdorff, Loet, 2010. "Longitudinal trends in networks of university-industry-government relations in South Korea: The role of programmatic incentives," Research Policy, Elsevier, vol. 39(5), pages 640-649, June.
    33. Dovev Lavie & Israel Drori, 2012. "Collaborating for Knowledge Creation and Application: The Case of Nanotechnology Research Programs," Organization Science, INFORMS, vol. 23(3), pages 704-724, June.
    34. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    35. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    36. Ardito, Lorenzo & Ferraris, Alberto & Messeni Petruzzelli, Antonio & Bresciani, Stefano & Del Giudice, Manlio, 2019. "The role of universities in the knowledge management of smart city projects," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 312-321.
    37. Khaldoun AbouAssi & Angela Bies, 2018. "Relationships and resources: the isomorphism of nonprofit organizations’ (NPO) self-regulation," Public Management Review, Taylor & Francis Journals, vol. 20(11), pages 1581-1601, November.
    38. Brem, Alexander & Radziwon, Agnieszka, 2017. "Efficient Triple Helix collaboration fostering local niche innovation projects – A case from Denmark," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 130-141.
    39. Loet Leydesdorff & Igone Porto-Gomez, 2019. "Measuring the expected synergy in Spanish regional and national systems of innovation," The Journal of Technology Transfer, Springer, vol. 44(1), pages 189-209, February.
    40. Fernández-Esquinas, Manuel & Pinto, Hugo & Yruela, Manuel Pérez & Pereira, Tiago Santos, 2016. "Tracing the flows of knowledge transfer: Latent dimensions and determinants of university–industry interactions in peripheral innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 266-279.
    41. Ingunn Elvekrok & Nina Veflen & Etty R. Nilsen & Anne H. Gausdal, 2018. "Firm innovation benefits from regional triple-helix networks," Regional Studies, Taylor & Francis Journals, vol. 52(9), pages 1214-1224, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Œwiadek & Piotr Dzikowski & Jadwiga Gor¹czkowska & Marek Tomaszewski, 2022. "The National Innovation System in a catching-up country: empirical evidence based on micro data of a triple helix in Poland," Oeconomia Copernicana, Institute of Economic Research, vol. 13(2), pages 511-540, June.
    2. Elena Calvo-Gallardo & Nieves Arranz & Juan Carlos Fernandez de Arroyabe, 2022. "Contribution of the Horizon2020 Program to the Research and Innovation Strategies for Smart Specialization in Coal Regions in Transition: The Spanish Case," Sustainability, MDPI, vol. 14(4), pages 1-28, February.
    3. Tyurchev, Kirill, 2021. "Управление Инновационными Системами: От Национального До Локального Уровня [Management of Innovative Systems: From National to Local LeveL]," MPRA Paper 111908, University Library of Munich, Germany.
    4. Fernandez de Arroyabe, Juan Carlos & Schumann, Martin & Sena, Vania & Lucas, Pablo, 2021. "Understanding the network structure of agri-food FP7 projects: An approach to the effectiveness of innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    5. Alexander, Anna & Pilonato, Silvia & Redigolo, Giulia, 2023. "Do institutional donors value social media activity and engagement? Empirical evidence on Italian non-profit grantees," The British Accounting Review, Elsevier, vol. 55(5).
    6. Tao, Zhuang & Shuliang, Zhao, 2022. "Collaborative innovation relationship in Yangtze River Delta of China: Subjects collaboration and spatial correlation," Technology in Society, Elsevier, vol. 69(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    2. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    3. Baier-Fuentes, Hugo & Guerrero, Maribel & Amorós, José Ernesto, 2021. "Does triple helix collaboration matter for the early internationalisation of technology-based firms in emerging Economies?," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    4. Weimin Kang & Shuliang Zhao & Wei Song & Tao Zhuang, 2019. "Triple helix in the science and technology innovation centers of China from the perspective of mutual information: a comparative study between Beijing and Shanghai," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 921-940, March.
    5. Igors Skute & Kasia Zalewska-Kurek & Isabella Hatak & Petra Weerd-Nederhof, 2019. "Mapping the field: a bibliometric analysis of the literature on university–industry collaborations," The Journal of Technology Transfer, Springer, vol. 44(3), pages 916-947, June.
    6. Porto-Gomez, Igone & Zabala-Iturriagagoitia, Jon Mikel & Leydesdorff, Loet, 2019. "Innovation systems in México: A matter of missing synergies," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    7. Chen, Kaihua & Zhang, Yi & Zhu, Guilong & Mu, Rongping, 2020. "Do research institutes benefit from their network positions in research collaboration networks with industries or/and universities?," Technovation, Elsevier, vol. 94.
    8. Lee, Young Hoon & Kim, YoungJun, 2016. "Analyzing interaction in R&D networks using the Triple Helix method: Evidence from industrial R&D programs in Korean government," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 93-105.
    9. Loet Leydesdorff & Han Woo Park & Balazs Lengyel, 2014. "A routine for measuring synergy in university–industry–government relations: mutual information as a Triple-Helix and Quadruple-Helix indicator," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 27-35, April.
    10. Noriko Yoda & Kenichi Kuwashima, 2020. "Triple Helix of University–Industry–Government Relations in Japan: Transitions of Collaborations and Interactions," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1120-1144, September.
    11. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    12. Chung Joo Chung, 2014. "An analysis of the status of the Triple Helix and university–industry–government relationships in Asia," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 139-149, April.
    13. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    14. Swapan Kumar Patra & Mammo Muchie, 2018. "Research and innovation in South African universities: from the triple helix’s perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 51-76, July.
    15. Pieter Stek & Marina Geenhuizen, 2015. "Measuring the dynamics of an innovation system using patent data: a case study of South Korea, 2001–2010," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1325-1343, July.
    16. Vestal, Alex & Danneels, Erwin, 2018. "Knowledge exchange in clusters: The contingent role of regional inventive concentration," Research Policy, Elsevier, vol. 47(10), pages 1887-1903.
    17. Hernández-Trasobares, Alejandro & Murillo-Luna, Josefina L., 2020. "The effect of triple helix cooperation on business innovation: The case of Spain," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    18. Ssu-Han Chen & Mu-Hsuan Huang & Dar-Zen Chen, 2013. "Driving factors of external funding and funding effects on academic innovation performance in university–industry–government linkages," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1077-1098, March.
    19. Xin Wang, 2023. "Research on the Coupling Coordination Degree of Triple Helix of Government Guidance, Industrial Innovation and Scientific Research Systems: Evidence from China," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    20. Milica Jovanović & Gordana Savić & Yuzhuo Cai & Maja Levi-Jakšić, 2022. "Towards a Triple Helix based efficiency index of innovation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2577-2609, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:159:y:2020:i:c:s004016252031009x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.