IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v63y2013icp1032-1041.html
   My bibliography  Save this article

Implications of the international reduction pledges on long-term energy system changes and costs in China and India

Author

Listed:
  • Lucas, Paul L.
  • Shukla, P.R.
  • Chen, Wenying
  • van Ruijven, Bas J.
  • Dhar, Subash
  • den Elzen, Michel G.J.
  • van Vuuren, Detlef P.

Abstract

This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood of meeting the 2°C target: a least-cost pathway and a pathway that postpones ambitious mitigation action, starting from the Copenhagen Accord pledges. Both pathways have similar 2010–2050 cumulative greenhouse gas emissions. The analysis shows that postponing mitigation action increases the lock-in in less energy efficient technologies and results in much higher cumulative mitigation costs. The models agree that carbon capture and storage (CCS) and nuclear energy are important mitigation technologies, while the shares of biofuels and other renewables vary largely over the models. Differences between India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies.

Suggested Citation

  • Lucas, Paul L. & Shukla, P.R. & Chen, Wenying & van Ruijven, Bas J. & Dhar, Subash & den Elzen, Michel G.J. & van Vuuren, Detlef P., 2013. "Implications of the international reduction pledges on long-term energy system changes and costs in China and India," Energy Policy, Elsevier, vol. 63(C), pages 1032-1041.
  • Handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:1032-1041
    DOI: 10.1016/j.enpol.2013.09.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513009506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.09.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    2. van Ruijven, Bas J. & van Vuuren, Detlef P. & van Vliet, Jasper & Mendoza Beltran, Angelica & Deetman, Sebastiaan & den Elzen, Michel G.J., 2012. "Implications of greenhouse gas emission mitigation scenarios for the main Asian regions," Energy Economics, Elsevier, vol. 34(S3), pages 459-469.
    3. Chen, Wenying & Li, Hualin & Wu, Zongxin, 2010. "Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model," Energy Policy, Elsevier, vol. 38(11), pages 7106-7120, November.
    4. Niklas H�hne & Michel den Elzen & Martin Weiss, 2006. "Common but differentiated convergence (CDC): a new conceptual approach to long-term climate policy," Climate Policy, Taylor & Francis Journals, vol. 6(2), pages 181-199, March.
    5. Jasper Vliet & Maarten Berg & Michiel Schaeffer & Detlef Vuuren & Michel Elzen & Andries Hof & Angelica Mendoza Beltran & Malte Meinshausen, 2012. "Copenhagen Accord Pledges imply higher costs for staying below 2°C warming," Climatic Change, Springer, vol. 113(2), pages 551-561, July.
    6. S. Mahendra Dev, 2008. "India," Chapters, in: Anis Chowdhury & Wahiduddin Mahmud (ed.), Handbook on the South Asian Economies, chapter 1, Edward Elgar Publishing.
    7. van Ruijven, Bas J. & Weitzel, Matthias & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & Peterson, Sonja & Narita, Daiju, 2012. "Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches," Energy Policy, Elsevier, vol. 46(C), pages 116-134.
    8. Bert Metz & Marcel Berk & Michel den Elzen & Bert de Vries & Detlef van Vuuren, 2002. "Towards an equitable global climate change regime: compatibility with Article 2 of the Climate Change Convention and the link with sustainable development," Climate Policy, Taylor & Francis Journals, vol. 2(2-3), pages 211-230, September.
    9. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    10. P. Shukla & Subash Dhar, 2011. "Climate agreements and India: aligning options and opportunities on a new track," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 11(3), pages 229-243, September.
    11. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    12. Garg, Amit & Shukla, P.R., 2009. "Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)," Energy, Elsevier, vol. 34(8), pages 1032-1041.
    13. P. R. Shukla & Subash Dhar & Diptiranjan Mahapatra, 2008. "Low-carbon society scenarios for India," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 156-176, December.
    14. Detlef Vuuren & Keywan Riahi, 2011. "The relationship between short-term emissions and long-term concentration targets," Climatic Change, Springer, vol. 104(3), pages 793-801, February.
    15. van Ruijven, Bas & Urban, Frauke & Benders, René M.J. & Moll, Henri C. & van der Sluijs, Jeroen P. & de Vries, Bert & van Vuuren, Detlef P., 2008. "Modeling Energy and Development: An Evaluation of Models and Concepts," World Development, Elsevier, vol. 36(12), pages 2801-2821, December.
    16. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    17. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    18. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    19. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    20. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    21. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    2. Gupta, Dipti & Ghersi, Frédéric & Vishwanathan, Saritha S. & Garg, Amit, 2019. "Achieving sustainable development in India along low carbon pathways: Macroeconomic assessment," World Development, Elsevier, vol. 123(C), pages 1-1.
    3. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    5. Dhar, Subash & Pathak, Minal & Shukla, Priyadarshi R., 2020. "Transformation of India's steel and cement industry in a sustainable 1.5 °C world," Energy Policy, Elsevier, vol. 137(C).
    6. Ritu Mathur & Swapnil Shekhar, 2020. "India’s energy sector choices—options and implications of ambitious mitigation efforts," Climatic Change, Springer, vol. 162(4), pages 1893-1911, October.
    7. Lining Wang & Wenying Chen & Hongjun Zhang & Ding Ma, 2017. "Dynamic equity carbon permit allocation scheme to limit global warming to two degrees," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(4), pages 609-628, April.
    8. Lucas, Paul L. & Nielsen, Jens & Calvin, Katherine & L. McCollum, David & Marangoni, Giacomo & Strefler, Jessica & van der Zwaan, Bob C.C. & van Vuuren, Detlef P., 2015. "Future energy system challenges for Africa: Insights from Integrated Assessment Models," Energy Policy, Elsevier, vol. 86(C), pages 705-717.
    9. Fragkos, Panagiotis & Tasios, Nikos & Paroussos, Leonidas & Capros, Pantelis & Tsani, Stella, 2017. "Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050," Energy Policy, Elsevier, vol. 100(C), pages 216-226.
    10. Kawai, Eiji & Ozawa, Akito & Leibowicz, Benjamin D., 2022. "Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan," Applied Energy, Elsevier, vol. 328(C).
    11. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    12. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    13. Peterson, Sonja & Weitzel, Matthias, 2014. "Reaching a climate agreement: Do we have to compensate for energy market effects of climate policy?," Kiel Working Papers 1965, Kiel Institute for the World Economy (IfW Kiel).
    14. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    15. Daniel Johansson & Paul Lucas & Matthias Weitzel & Erik Ahlgren & A. Bazaz & Wenying Chen & Michel Elzen & Joydeep Ghosh & Maria Grahn & Qiao-Mei Liang & Sonja Peterson & Basanta Pradhan & Bas Ruijven, 2015. "Multi-model comparison of the economic and energy implications for China and India in an international climate regime," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1335-1359, December.
    16. Vaillancourt, Kathleen & Bahn, Olivier & Roy, Pierre-Olivier & Patreau, Valérie, 2018. "Is there a future for new hydrocarbon projects in a decarbonizing energy system? A case study for Quebec (Canada)," Applied Energy, Elsevier, vol. 218(C), pages 114-130.
    17. Lining Wang & Wenying Chen & XunZhang Pan & Nan Li & Huan Wang & Danyang Li & Han Chen, 2018. "Scale and benefit of global carbon markets under the 2 °C goal: integrated modeling and an effort-sharing platform," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1207-1223, December.
    18. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    19. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & van Vuuren, Detlef P., 2018. "Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 114(C), pages 355-366.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johansson, Daniel J. A. & Lucas, Paul L. & Weitzel, Matthias & Ahlgren, Erik O. & Bazaz, A. B. & Chen, Wenying & den Elzen, Michel G. J. & Ghosh, Joydeep & Grahn, Maria & Liang, Qiao-Mei & Peterson, S, 2012. "Multi-model analyses of the economic and energy implications for China and India in a post-Kyoto climate regime," Kiel Working Papers 1808, Kiel Institute for the World Economy (IfW Kiel).
    2. Daniel Johansson & Paul Lucas & Matthias Weitzel & Erik Ahlgren & A. Bazaz & Wenying Chen & Michel Elzen & Joydeep Ghosh & Maria Grahn & Qiao-Mei Liang & Sonja Peterson & Basanta Pradhan & Bas Ruijven, 2015. "Multi-model comparison of the economic and energy implications for China and India in an international climate regime," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1335-1359, December.
    3. Lucas, Paul L. & Nielsen, Jens & Calvin, Katherine & L. McCollum, David & Marangoni, Giacomo & Strefler, Jessica & van der Zwaan, Bob C.C. & van Vuuren, Detlef P., 2015. "Future energy system challenges for Africa: Insights from Integrated Assessment Models," Energy Policy, Elsevier, vol. 86(C), pages 705-717.
    4. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    5. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    6. Weitzel, Matthias & Ghosh, Joydeep & Peterson, Sonja & Pradhan, Basanta K., 2015. "Effects of international climate policy for India: evidence from a national and global CGE model," Environment and Development Economics, Cambridge University Press, vol. 20(4), pages 516-538, August.
    7. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    8. van Ruijven, Bas J. & van Vuuren, Detlef P. & van Vliet, Jasper & Mendoza Beltran, Angelica & Deetman, Sebastiaan & den Elzen, Michel G.J., 2012. "Implications of greenhouse gas emission mitigation scenarios for the main Asian regions," Energy Economics, Elsevier, vol. 34(S3), pages 459-469.
    9. Gernaat, David E.H.J. & Van Vuuren, Detlef P. & Van Vliet, Jasper & Sullivan, Patrick & Arent, Douglas J., 2014. "Global long-term cost dynamics of offshore wind electricity generation," Energy, Elsevier, vol. 76(C), pages 663-672.
    10. Kainuma, Mikiko & Shukla, Priyadarshi R. & Jiang, Kejun, 2012. "Framing and modeling of a low carbon society: An overview," Energy Economics, Elsevier, vol. 34(S3), pages 316-324.
    11. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    12. Gambhir, Ajay & Napp, Tamaryn A. & Emmott, Christopher J.M. & Anandarajah, Gabrial, 2014. "India's CO2 emissions pathways to 2050: Energy system, economic and fossil fuel impacts with and without carbon permit trading," Energy, Elsevier, vol. 77(C), pages 791-801.
    13. Lining Wang & Wenying Chen & Hongjun Zhang & Ding Ma, 2017. "Dynamic equity carbon permit allocation scheme to limit global warming to two degrees," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(4), pages 609-628, April.
    14. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    15. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    16. Luderer, Gunnar & Pietzcker, Robert C. & Kriegler, Elmar & Haller, Markus & Bauer, Nico, 2012. "Asia's role in mitigating climate change: A technology and sector specific analysis with ReMIND-R," Energy Economics, Elsevier, vol. 34(S3), pages 378-390.
    17. Krey, Volker & O'Neill, Brian C. & van Ruijven, Bas & Chaturvedi, Vaibhav & Daioglou, Vassilis & Eom, Jiyong & Jiang, Leiwen & Nagai, Yu & Pachauri, Shonali & Ren, Xiaolin, 2012. "Urban and rural energy use and carbon dioxide emissions in Asia," Energy Economics, Elsevier, vol. 34(S3), pages 272-283.
    18. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    19. Michel Elzen & Angelica Beltran & Andries Hof & Bas Ruijven & Jasper Vliet, 2013. "Reduction targets and abatement costs of developing countries resulting from global and developed countries’ reduction targets by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(4), pages 491-512, April.
    20. Melnikov, Nikolai B. & O’Neill, Brian C. & Dalton, Michael G. & van Ruijven, Bas J., 2017. "Downscaling heterogeneous household outcomes in dynamic CGE models for energy-economic analysis," Energy Economics, Elsevier, vol. 65(C), pages 87-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:1032-1041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.