IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i6p3414-3424.html
   My bibliography  Save this article

Conditional inevitability: Expert perceptions of carbon capture and storage uncertainties in the UK context

Author

Listed:
  • Evar, Benjamin

Abstract

This paper presents findings on expert perceptions of uncertainty in carbon capture and storage (CCS) technology and policy in the UK, through survey data and semi-structured interviews with 19 individual participants. Experts were interviewed in industry, research, and non-governmental organisations (NGOs) in the summer of 2009 and were asked to comment on a range of technical processes as well as policy concerns. The survey revealed that perceptions of the technology conform to a 'certainty trough' with users expressing the lowest level of uncertainty, and outsiders expressing the highest level of uncertainty. The interviews revealed that experts express certitude in the prospects for deploying large-scale CCS technology in the UK, all the while questioning several underlying technical and policy premises that are necessary to ensure this goal.

Suggested Citation

  • Evar, Benjamin, 2011. "Conditional inevitability: Expert perceptions of carbon capture and storage uncertainties in the UK context," Energy Policy, Elsevier, vol. 39(6), pages 3414-3424, June.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3414-3424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511002187
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
    2. van Alphen, Klaas & van Voorst tot Voorst, Quirine & Hekkert, Marko P. & Smits, Ruud E.H.M., 2007. "Societal acceptance of carbon capture and storage technologies," Energy Policy, Elsevier, vol. 35(8), pages 4368-4380, August.
    3. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    4. Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
    5. Martin Chick, 2007. "Electricity and Energy Policy in Britain, France and the United States since 1945," Books, Edward Elgar Publishing, number 3650.
    6. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    7. Hansson, Anders & Bryngelsson, Mårten, 2009. "Expert opinions on carbon dioxide capture and storage--A framing of uncertainties and possibilities," Energy Policy, Elsevier, vol. 37(6), pages 2273-2282, June.
    8. Baruch Fischhoff, 1995. "Risk Perception and Communication Unplugged: Twenty Years of Process," Risk Analysis, John Wiley & Sons, vol. 15(2), pages 137-145, April.
    9. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    10. Gale, John & Davison, John, 2004. "Transmission of CO2—safety and economic considerations," Energy, Elsevier, vol. 29(9), pages 1319-1328.
    11. Utgikar, V.P. & Scott, J.P., 2006. "Energy forecasting: Predictions, reality and analysis of causes of error," Energy Policy, Elsevier, vol. 34(17), pages 3087-3092, November.
    12. Huijts, Nicole M.A. & Midden, Cees J.H. & Meijnders, Anneloes L., 2007. "Social acceptance of carbon dioxide storage," Energy Policy, Elsevier, vol. 35(5), pages 2780-2789, May.
    13. Rob Swart & Lenny Bernstein & Minh Ha-Duong & Arthur Petersen, 2009. "Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC," Climatic Change, Springer, vol. 92(1), pages 1-29, January.
    14. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    15. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zyadin, Anas & Halder, Pradipta & Kähkönen, Tanja & Puhakka, Antero, 2014. "Challenges to renewable energy: A bulletin of perceptions from international academic arena," Renewable Energy, Elsevier, vol. 69(C), pages 82-88.
    2. Davies, Lincoln L. & Uchitel, Kirsten & Ruple, John, 2013. "Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment," Energy Policy, Elsevier, vol. 59(C), pages 745-761.
    3. Martínez Arranz, Alfonso, 2015. "Carbon capture and storage: Frames and blind spots," Energy Policy, Elsevier, vol. 82(C), pages 249-259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils Markusson, 2012. "Born Again: The Debate on Lock-in and Ccs," Energy & Environment, , vol. 23(2-3), pages 389-394, May.
    2. Bowen, Frances, 2011. "Carbon capture and storage as a corporate technology strategy challenge," Energy Policy, Elsevier, vol. 39(5), pages 2256-2264, May.
    3. Praetorius, Barbara & Schumacher, Katja, 2009. "Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage," Energy Policy, Elsevier, vol. 37(12), pages 5081-5093, December.
    4. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    5. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    6. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    7. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    8. Floater, Graham & Rode, Philipp & Robert, Alexis & Kennedy, Chris & Hoornweg, Dan & Slavcheva, Roxana & Godfrey, Nick, 2014. "Cities and the New Climate Economy: the transformative role of global urban growth," LSE Research Online Documents on Economics 60775, London School of Economics and Political Science, LSE Library.
    9. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    10. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    11. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    12. Fertel, Camille & Bahn, Olivier & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Canadian energy and climate policies: A SWOT analysis in search of federal/provincial coherence," Energy Policy, Elsevier, vol. 63(C), pages 1139-1150.
    13. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    14. Simon Shackley & Michael Thompson, 2012. "Lost in the mix: will the technologies of carbon dioxide capture and storage provide us with a breathing space as we strive to make the transition from fossil fuels to renewables?," Climatic Change, Springer, vol. 110(1), pages 101-121, January.
    15. Doblinger, Claudia & Soppe, Birthe, 2013. "Change-actors in the U.S. electric energy system: The role of environmental groups in utility adoption and diffusion of wind power," Energy Policy, Elsevier, vol. 61(C), pages 274-284.
    16. Dumas, Marion & Rising, James & Urpelainen, Johannes, 2016. "Political competition and renewable energy transitions over long time horizons: A dynamic approach," Ecological Economics, Elsevier, vol. 124(C), pages 175-184.
    17. Pearson, Peter J.G. & Foxon, Timothy J., 2012. "A low carbon industrial revolution? Insights and challenges from past technological and economic transformations," Energy Policy, Elsevier, vol. 50(C), pages 117-127.
    18. Johannes Urpelainen, 2013. "A model of dynamic climate governance: dream big, win small," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 13(2), pages 107-125, May.
    19. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    20. Gerardo Marletto, 2012. "Which Conceptual Foundations For Environmental Policies? An Institutional And Evolutionary Framework Of Economic Change," Working Papers 0112, CREI Università degli Studi Roma Tre, revised 2012.

    More about this item

    Keywords

    CCS Uncertainty Expert perceptions;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3414-3424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.