IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v127y2019icp165-178.html
   My bibliography  Save this article

Health and economic benefits of cleaner residential heating in the Beijing–Tianjin–Hebei region in China

Author

Listed:
  • Zhang, Xiang
  • Jin, Yana
  • Dai, Hancheng
  • Xie, Yang
  • Zhang, Shiqiu

Abstract

Millions of households in many underdeveloped countries use coal stoves for heating, which remains a major air pollution source. Since 2015, policies for substituting residential coal use with electricity have been implemented at unprecedented levels in the Beijing–Tianjin–Hebei (BTH) region, one of the most severely air polluted areas in China. This study evaluated the health benefits of the residential “coal-to-electricity” policy in the BTH region. We developed an integrated assessment model to investigate the impact of the policy on both the ambient and indoor air quality improvement. The private health benefits from indoor air quality improvements do not justify the costs. However, adding the spillover public health benefits from ambient air quality improvements, the policy brings net social benefits to the BTH region. Compared to a no-policy scenario, Beijing obtains the most health benefits and enjoys the most synergies from regional cooperation among the three provinces/municipalities. Hebei bears the highest cost since it has more households fueled by coal. Our results showing net social benefits provide support for a massive and accelerated implementation of this policy in the BTH region. The provincial distributional results can provide a reference for subsidies from Beijing and Tianjin to Hebei for achieving region-wide implementation.

Suggested Citation

  • Zhang, Xiang & Jin, Yana & Dai, Hancheng & Xie, Yang & Zhang, Shiqiu, 2019. "Health and economic benefits of cleaner residential heating in the Beijing–Tianjin–Hebei region in China," Energy Policy, Elsevier, vol. 127(C), pages 165-178.
  • Handle: RePEc:eee:enepol:v:127:y:2019:i:c:p:165-178
    DOI: 10.1016/j.enpol.2018.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518308048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeuland, Marc & Tan Soo, Jie-Sheng & Shindell, Drew, 2018. "The need for policies to reduce the costs of cleaner cooking in low income settings: Implications from systematic analysis of costs and benefits," Energy Policy, Elsevier, vol. 121(C), pages 275-285.
    2. Guo, Xiaoqi & Haab, Timothy C. & Hammitt, James K., 2006. "Contingent Valuation and the Economic Value of Air-Pollution-Related Health Risks in China," 2006 Annual meeting, July 23-26, Long Beach, CA 21366, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    4. Jonathan I. Levy & Lisa K. Baxter & Joel Schwartz, 2009. "Uncertainty and Variability in Health‐Related Damages from Coal‐Fired Power Plants in the United States," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 1000-1014, July.
    5. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    6. Quah, Euston & Boon, Tay Liam, 2003. "The economic cost of particulate air pollution on health in Singapore," Journal of Asian Economics, Elsevier, vol. 14(1), pages 73-90, February.
    7. Duan, Xiaoli & Jiang, Yong & Wang, Beibei & Zhao, Xiuge & Shen, Guofeng & Cao, Suzhen & Huang, Nan & Qian, Yan & Chen, Yiting & Wang, Limin, 2014. "Household fuel use for cooking and heating in China: Results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey (CEERHAPS)," Applied Energy, Elsevier, vol. 136(C), pages 692-703.
    8. Ezzati, Majid & Kammen, Daniel M., 2002. "Evaluating the health benefits of transitions in household energy technologies in Kenya," Energy Policy, Elsevier, vol. 30(10), pages 815-826, August.
    9. Kelly, J. Andrew & Fu, Miao & Clinch, J. Peter, 2016. "Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels," Energy Policy, Elsevier, vol. 98(C), pages 431-442.
    10. Trudy Ann Cameron, 2014. "Valuing Morbidity in Environmental Benefit-Cost Analysis," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 249-272, October.
    11. Yana Jin & Shiqiu Zhang, 2013. "Elasticity Estimates of Urban Resident Demand for Electricity: A Case Study in Beijing," Energy & Environment, , vol. 24(7-8), pages 1229-1248, December.
    12. Marc A Jeuland & Subhrendu K Pattanayak, 2012. "Benefits and Costs of Improved Cookstoves: Assessing the Implications of Variability in Health, Forest and Climate Impacts," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    13. Yana Jin & Shiqiu Zhang, 2018. "An Economic Evaluation of the Health Effects of Reducing Fine Particulate Pollution in Chinese Cities," Asian Development Review, MIT Press, vol. 35(2), pages 58-84, September.
    14. Alistair Hunt & Julia Ferguson & Fintan Hurley & Alison Searl, 2016. "Social Costs of Morbidity Impacts of Air Pollution," OECD Environment Working Papers 99, OECD Publishing.
    15. Jin, Yana & Andersson, Henrik & Zhang, Shiqiu, 2017. "China’s Cap on Coal and the Efficiency of Local Interventions: A Benefit-Cost Analysis of Phasing out Coal in Power Plants and in Households in Beijing 1," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 8(2), pages 147-186, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Lunyu & Hu, Xian & Zhang, Xinyi & Zhang, Xiao-Bing, 2022. "Who suffers from energy poverty in household energy transition? Evidence from clean heating program in rural China," Energy Economics, Elsevier, vol. 106(C).
    2. Wu Xie & Chen Chen & Fangyi Li & Bofeng Cai & Ranran Yang & Libin Cao & Pengcheng Wu & Lingyun Pang, 2021. "Key Factors of Rural Households’ Willingness to Pay for Cleaner Heating in Hebi: A Case Study in Northern China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    3. Li, Hui & Zhang, Ruining & Ai, Xianneng, 2022. "Cost estimation of “coal-to-gas” project: Government and residents’ perspectives," Energy Policy, Elsevier, vol. 167(C).
    4. Pan Lingying, & Kui, Zhou & Weiqi, Li & Fuyuan, Yang & Zheng, Li, 2019. "Subsidy policy discussion on the hydroelectric power substitution for scattered coal consumption: A case study of Sichuan Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 539-549.
    5. Xiao, Bowen & Fan, Ying & Guo, Xiaodan & Xiang, Lin, 2022. "Re-evaluating environmental tax: An intergenerational perspective on health, education and retirement," Energy Economics, Elsevier, vol. 110(C).
    6. Yang, Tianqi & Shu, Yun & Zhang, Shaohui & Wang, Hongchang & Zhu, Jinwei & Wang, Fan, 2023. "Impacts of end-use electrification on air quality and CO2 emissions in China's northern cities in 2030," Energy, Elsevier, vol. 278(PA).
    7. Liu, Hongxun & Mauzerall, Denise L., 2020. "Costs of clean heating in China: Evidence from rural households in the Beijing-Tianjin-Hebei region," Energy Economics, Elsevier, vol. 90(C).
    8. Jin, Yana & Liu, Xiaorui & Chen, Xiang & Dai, Hancheng, 2020. "Allowance allocation matters in China's carbon emissions trading system," Energy Economics, Elsevier, vol. 92(C).
    9. Chenen Ma & Lina Madaniyazi & Yang Xie, 2021. "Impact of the Electric Vehicle Policies on Environment and Health in the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 18(2), pages 1-14, January.
    10. Chen, Si-Yuan & Xue, Meng-Tian & Wang, Zhao-Hua & Tian, Xin & Zhang, Bin, 2022. "Exploring pathways of phasing out clean heating subsidies for rural residential buildings in China," Energy Economics, Elsevier, vol. 116(C).
    11. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    12. Xie, Lunyu & Wei, Chu & Zheng, Xinye & Liu, Yang & Wu, Wanyi & Feng, Ziru, 2023. "Who benefits from household energy transition? A cost-benefit analysis based on household survey data in China," China Economic Review, Elsevier, vol. 77(C).
    13. Guo, Xiaodan & Xiao, Bowen, 2022. "How can pricing strategy for district heating help China realize cleaner residential heating?," Energy Economics, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Yana & Andersson, Henrik & Zhang, Shiqiu, 2020. "Do preferences to reduce health risks related to air pollution depend on illness type? Evidence from a choice experiment in Beijing, China," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    2. Peng, Wei & Yang, Junnan & Lu, Xi & Mauzerall, Denise L., 2018. "Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China," Applied Energy, Elsevier, vol. 218(C), pages 511-519.
    3. Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    4. Ziebarth, N. R. & Schmitt, M. & Karlsson, M., 2013. "The short-term population health effects of weather and pollution: implications of climate change," Health, Econometrics and Data Group (HEDG) Working Papers 13/34, HEDG, c/o Department of Economics, University of York.
    5. Sumei Chen & Ling‐Yun He, 2019. "Taxation and the Environment–Health–Poverty Trap: A Policy Experiment Perspective," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 27(1), pages 72-92, January.
    6. Jeuland, Marc & Fetter, T. Robert & Li, Yating & Pattanayak, Subhrendu K. & Usmani, Faraz & Bluffstone, Randall A. & Chávez, Carlos & Girardeau, Hannah & Hassen, Sied & Jagger, Pamela & Jaime, Mónica , 2021. "Is energy the golden thread? A systematic review of the impacts of modern and traditional energy use in low- and middle-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    8. Krishnapriya, P.P. & Chandrasekaran, Maya & Jeuland, Marc & Pattanayak, Subhrendu K., 2021. "Do improved cookstoves save time and improve gender outcomes? Evidence from six developing countries," Energy Economics, Elsevier, vol. 102(C).
    9. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    10. Zhongbao Liu & Fengfei Lou & Xin Qi & Yiyao Shen, 2020. "Enhancing Heating Performance of Low-Temperature Air Source Heat Pumps Using Compressor Casing Thermal Storage," Energies, MDPI, vol. 13(12), pages 1-18, June.
    11. Yang, Siyuan & Fang, Delin & Chen, Bin, 2019. "Human health impact and economic effect for PM2.5 exposure in typical cities," Applied Energy, Elsevier, vol. 249(C), pages 316-325.
    12. Jeuland, Marc & Desai, Manish A. & Bair, Elizabeth F. & Mohideen Abdul Cader, Nafeesa & Natesan, Durairaj & Isaac, Wilson Jayakaran & Sambandam, Sankar & Balakrishnan, Kalpana & Thangavel, Gurusamy & , 2023. "A randomized trial of price subsidies for liquefied petroleum cooking gas among low-income households in rural India," World Development Perspectives, Elsevier, vol. 30(C).
    13. Lenz, Luciane & Bensch, Gunther & Chartier, Ryan & Kane, Moustapha & Peters, Jörg & Jeuland, Marc, 2022. "Releasing the killer from the kitchen? Ventilation and air pollution from biomass cooking," Ruhr Economic Papers 967, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Babak Khavari & Camilo Ramirez & Marc Jeuland & Francesco Fuso Nerini, 2023. "A geospatial approach to understanding clean cooking challenges in sub-Saharan Africa," Nature Sustainability, Nature, vol. 6(4), pages 447-457, April.
    15. Liu, Hongxun & Mauzerall, Denise L., 2020. "Costs of clean heating in China: Evidence from rural households in the Beijing-Tianjin-Hebei region," Energy Economics, Elsevier, vol. 90(C).
    16. Chen, Su-Mei & He, Ling-Yun, 2014. "Welfare loss of China's air pollution: How to make personal vehicle transportation policy," China Economic Review, Elsevier, vol. 31(C), pages 106-118.
    17. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    18. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    19. Karanja, Alice & Gasparatos, Alexandros, 2019. "Adoption and impacts of clean bioenergy cookstoves in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 285-306.
    20. Jia, Jie & Lee, W.L. & Cheng, Yuanda & Tian, Qi, 2021. "Can reversible room air-conditioner be used for combined space and domestic hot water heating in subtropical dwellings? Techno-economic evidence from Hong Kong," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:127:y:2019:i:c:p:165-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.