IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v107y2017icp669-677.html
   My bibliography  Save this article

The energy policy outlets for community acceptance of ecological investment in China

Author

Listed:
  • Wang, Zhan
  • Deng, Xiangzheng

Abstract

Policy implication about satisfactions of energy use and housing are much sensitive to social discount rate changes, which can increase the dissatisfaction of residential happiness because of an increasing price mechanism when ‘per capita’ resource faces to decline. We thus estimate the private expected rates of return on ecological investment to improve urban and peri-urban environmental infrastructures are about to 7.54% and 18.37% respectively. The endogeneities of income and saving rise can increase the uncertain part of private discount rate up to a higher estimated subjective social discount rate about 14.46% for urban or 8.86% for peri-urban environmental infrastructures improvement. The estimated time preference rate can be raised from 1‰ to 1.72‰. The prediction of these estimated private discount rate can ease at least 20% of the dissatisfaction to energy use and 10% of the dissatisfaction to housing conditions. Therefore, we suggest opening the landscape rights to individual willingness-to-invest, and providing options to let people pay a part of their pensions for temporal permits to living in some well-served villages where are close to the places with advanced environmental amenities and being supported by central planning policy via the crowdfunding operation for improving environmental quality.

Suggested Citation

  • Wang, Zhan & Deng, Xiangzheng, 2017. "The energy policy outlets for community acceptance of ecological investment in China," Energy Policy, Elsevier, vol. 107(C), pages 669-677.
  • Handle: RePEc:eee:enepol:v:107:y:2017:i:c:p:669-677
    DOI: 10.1016/j.enpol.2017.03.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517302173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.03.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    2. Deng, Xiangzheng & Huang, Jikun & Uchida, Emi & Rozelle, Scott & Gibson, John, 2011. "Pressure cookers or pressure valves: Do roads lead to deforestation in China?," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 79-94, January.
    3. Weitzman Martin L., 1994. "On the Environmental Discount Rate," Journal of Environmental Economics and Management, Elsevier, vol. 26(2), pages 200-209, March.
    4. Richard T. T. Forman & Jianguo Wu, 2016. "Where to put the next billion people," Nature, Nature, vol. 537(7622), pages 608-611, September.
    5. Huang, Cui & Su, Jun & Zhao, Xiaoyuan & Sui, Jigang & Ru, Peng & Zhang, Hanwei & Wang, Xin, 2012. "Government funded renewable energy innovation in China," Energy Policy, Elsevier, vol. 51(C), pages 121-127.
    6. Lee, Chul-Yong & Heo, Hyejin, 2016. "Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method," Energy Policy, Elsevier, vol. 94(C), pages 150-156.
    7. ZhongXiang Zhang, 2015. "Crossing the river by feeling the stones: the case of carbon trading in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 263-297, April.
    8. Zhang, Sufang & Jiao, Yiqian & Chen, Wenjun, 2017. "Demand-side management (DSM) in the context of China's on-going power sector reform," Energy Policy, Elsevier, vol. 100(C), pages 1-8.
    9. Partha Dasgupta, 2008. "Discounting climate change," Journal of Risk and Uncertainty, Springer, vol. 37(2), pages 141-169, December.
    10. Bauwens, Thomas, 2016. "Explaining the diversity of motivations behind community renewable energy," Energy Policy, Elsevier, vol. 93(C), pages 278-290.
    11. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    12. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    13. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    14. Cao, Xun & Kleit, Andrew & Liu, Chuyu, 2016. "Why invest in wind energy? Career incentives and Chinese renewable energy politics," Energy Policy, Elsevier, vol. 99(C), pages 120-131.
    15. Leete, Simeon & Xu, Jingjing & Wheeler, David, 2013. "Investment barriers and incentives for marine renewable energy in the UK: An analysis of investor preferences," Energy Policy, Elsevier, vol. 60(C), pages 866-875.
    16. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enevoldsen, Peter, 2018. "A socio-technical framework for examining the consequences of deforestation: A case study of wind project development in Northern Europe," Energy Policy, Elsevier, vol. 115(C), pages 138-147.
    2. Jin, Gui & Guo, Baishu & Deng, Xiangzheng, 2020. "Is there a decoupling relationship between CO2 emission reduction and poverty alleviation in China?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    3. Wang, Chao & Zhan, Jinyan & Xin, Zhongling, 2020. "Comparative analysis of urban ecological management models incorporating low-carbon transformation," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    4. Ricardo Martín & Víctor Yepes, 2022. "Economic Valuation of Landscape in Marinas: Application to a Marina in Spanish Southern Mediterranean Coast (Granada, Spain)," Land, MDPI, vol. 11(9), pages 1-19, August.
    5. Liu, Wei & Zhan, Jinyan & Zhao, Fen & Wang, Pei & Li, Zhihui & Teng, Yanmin, 2018. "Changing trends and influencing factors of energy productivity growth: A case study in the Pearl River Delta Metropolitan Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    2. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    3. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    4. Ming Meng & Lixue Wang & Qu Chen, 2018. "Quota Allocation for Carbon Emissions in China’s Electric Power Industry Based Upon the Fairness Principle," Energies, MDPI, vol. 11(9), pages 1-16, August.
    5. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    6. Xiaofei Han & Jianling Jiao & Lancui Liu & Lanlan Li, 2017. "China’s energy demand and carbon dioxide emissions: do carbon emission reduction paths matter?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1333-1345, April.
    7. Zhaohua, Wang & Jingyun, Li & Bin, Lu & Bo, Wang & Bin, Zhang & Kaining, Sun & Mao, Fan, 2023. "Effectiveness and risk of initial carbon quota allocation principle under the uncertainty of the Chinese electricity market," China Economic Review, Elsevier, vol. 77(C).
    8. Zhao, Jiqiang & Wu, Xianhua & Guo, Ji & Gao, Chao, 2022. "Allocation of SO2 emission rights in city agglomerations considering cross-border transmission of pollutants: A new network DEA model," Applied Energy, Elsevier, vol. 325(C).
    9. Kejia Yang & Yalin Lei & Weiming Chen & Lingna Liu, 2018. "Carbon dioxide emission reduction quota allocation study on Chinese provinces based on two-stage Shapley information entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 321-335, March.
    10. Ciardiello, F. & Genovese, A. & Simpson, A., 2019. "Pollution responsibility allocation in supply networks: A game-theoretic approach and a case study," International Journal of Production Economics, Elsevier, vol. 217(C), pages 211-217.
    11. Evangelia Karasmanaki & Spyridon Galatsidas & Georgios Tsantopoulos, 2019. "An Investigation of Factors Affecting the Willingness to Invest in Renewables among Environmental Students: A Logistic Regression Approach," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    12. Stefano Moretti & Raja Trabelsi, 2021. "A Double-Weighted Bankruptcy Method to Allocate CO 2 Emissions Permits," Games, MDPI, vol. 12(4), pages 1-21, October.
    13. Stefano Moretti & Raja Trabelsi, 2021. "A Double-Weighted Bankruptcy Method to Allocate CO2 Emissions Permits," Post-Print hal-03835536, HAL.
    14. Stauch, Alexander & Gamma, Karoline, 2020. "Cash vs. solar power: An experimental investigation of the remuneration-related design of community solar offerings," Energy Policy, Elsevier, vol. 138(C).
    15. Fontina Petrakopoulou, 2017. "The Social Perspective on the Renewable Energy Autonomy of Geographically Isolated Communities: Evidence from a Mediterranean Island," Sustainability, MDPI, vol. 9(3), pages 1-8, February.
    16. Vasquez-Lavín, Felipe & Ponce Oliva, Roberto D. & Hernández, José Ignacio & Gelcich, Stefan & Carrasco, Moisés & Quiroga, Miguel, 2019. "Exploring dual discount rates for ecosystem services: Evidence from a marine protected area network," Resource and Energy Economics, Elsevier, vol. 55(C), pages 63-80.
    17. Shuhua Zhang & Jian Li & Bao Jiang & Tianmiao Guo, 2023. "Government Intervention, Structural Transformation, and Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    18. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    19. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    20. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:107:y:2017:i:c:p:669-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.