IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i3d10.1007_s11069-017-2747-0.html
   My bibliography  Save this article

China’s energy demand and carbon dioxide emissions: do carbon emission reduction paths matter?

Author

Listed:
  • Xiaofei Han

    (Hefei University of Technology)

  • Jianling Jiao

    (Hefei University of Technology)

  • Lancui Liu

    (Beijing Normal University
    Ministry of Environmental Protection of the People’s Republic of China
    Harvard University)

  • Lanlan Li

    (Hefei University of Technology)

Abstract

To investigate the impact of carbon emission reduction paths on energy demand and CO2 emissions in China, in this study, quantitative carbon emission reduction paths in the period 2014–2020 are established by decomposing the target for emissions reduction. An optimization model of energy demand, into which reduction paths are incorporated, is then constructed from a goal-oriented perspective. The results suggest that energy consumption varies under different emission reduction paths. Coal demand is found to be much more sensitive to the choice of emission reduction path than other forms of energy; in particular, it responds strongly to the decreasing reduction path. We conclude that the decreasing reduction path is a better means than the increasing reduction path of achieving China’s emission reduction target for 2020 with the least amount of energy and the least amount of CO2 emissions.

Suggested Citation

  • Xiaofei Han & Jianling Jiao & Lancui Liu & Lanlan Li, 2017. "China’s energy demand and carbon dioxide emissions: do carbon emission reduction paths matter?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1333-1345, April.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-017-2747-0
    DOI: 10.1007/s11069-017-2747-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2747-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2747-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheila M. Olmstead & Robert N. Stavins, 2006. "An International Policy Architecture for the Post-Kyoto Era," American Economic Review, American Economic Association, vol. 96(2), pages 35-38, May.
    2. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    3. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    4. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    5. Zhu, Bangzhu & Wang, Kefan & Chevallier, Julien & Wang, Ping & Wei, Yi-Ming, 2015. "Can China achieve its carbon intensity target by 2020 while sustaining economic growth?," Ecological Economics, Elsevier, vol. 119(C), pages 209-216.
    6. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    7. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    8. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    9. Cao, Jing & Karplus, Valerie J., 2014. "Firm-level determinants of energy and carbon intensity in China," Energy Policy, Elsevier, vol. 75(C), pages 167-178.
    10. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    11. repec:reg:rpubli:353 is not listed on IDEAS
    12. Andersson, Fredrik N.G. & Karpestam, Peter, 2013. "CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity," Energy Policy, Elsevier, vol. 61(C), pages 1285-1294.
    13. Grunewald, Nicole & Jakob, Michael & Mouratiadou, Ioanna, 2014. "Decomposing inequality in CO2 emissions: The role of primary energy carriers and economic sectors," Ecological Economics, Elsevier, vol. 100(C), pages 183-194.
    14. Olmstead, Sheila & Stavins, Robert, 2006. "An International Architecture for the Post-Kyoto Era," Working Paper Series rwp06-009, Harvard University, John F. Kennedy School of Government.
    15. Wang, Run & Liu, Wenjuan & Xiao, Lishan & Liu, Jian & Kao, William, 2011. "Path towards achieving of China's 2020 carbon emission reduction target--A discussion of low-carbon energy policies at province level," Energy Policy, Elsevier, vol. 39(5), pages 2740-2747, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiumei Sun & Haotian Zhang & Xueyang Wang & Zhongkui Qiao & Jinsong Li, 2022. "Towards Sustainable Development: A Study of Cross-Regional Collaborative Carbon Emission Reduction in China," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    2. Feng Dong & Yifei Hua & Bolin Yu, 2018. "Peak Carbon Emissions in China: Status, Key Factors and Countermeasures—A Literature Review," Sustainability, MDPI, vol. 10(8), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    2. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    3. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    6. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    7. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    8. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    9. Fleurbaey, Marc & Zuber, Stéphane, 2015. "Discounting, risk and inequality: A general approach," Journal of Public Economics, Elsevier, vol. 128(C), pages 34-49.
    10. Stefano Giglio & Bryan Kelly & Johannes Stroebel, 2021. "Climate Finance," Annual Review of Financial Economics, Annual Reviews, vol. 13(1), pages 15-36, November.
    11. Christoph Hambel & Holger Kraft & Eduardo Schwartz, 2015. "Optimal Carbon Abatement in a Stochastic Equilibrium Model with Climate Change," NBER Working Papers 21044, National Bureau of Economic Research, Inc.
    12. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    13. Dietz, Simon, 2012. "The treatment of risk and uncertainty in the US social cost of carbon for regulatory impact analysis," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-12.
    14. Gernot Wagner & Richard Zeckhauser, 2012. "Climate policy: hard problem, soft thinking," Climatic Change, Springer, vol. 110(3), pages 507-521, February.
    15. Foley, Duncan K. & Rezai, Armon & Taylor, Lance, 2013. "The social cost of carbon emissions: Seven propositions," Economics Letters, Elsevier, vol. 121(1), pages 90-97.
    16. Simon Dietz, 2011. "The treatment of risk and uncertainty in the US Social Cost of Carbon for Regulatory Impact Analysis," GRI Working Papers 54, Grantham Research Institute on Climate Change and the Environment.
    17. Nicholas Lawson & Dean Spears, 2018. "Optimal population and exhaustible resource constraints," Journal of Population Economics, Springer;European Society for Population Economics, vol. 31(1), pages 295-335, January.
    18. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    19. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    20. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-017-2747-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.