IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v124y2023ics0140988323002372.html
   My bibliography  Save this article

Potential gains of long-distance trade in electricity

Author

Listed:
  • López Prol, Javier
  • Steininger, Karl W.
  • Williges, Keith
  • Grossmann, Wolf D.
  • Grossmann, Iris

Abstract

Electrification of all economic sectors and solar photovoltaics (PV) becoming the lowest-cost electricity generation technology in ever more regions give rise to new potential gains of trade. We develop a stylized analytical model to minimize unit energy cost in autarky, open it to different trade configurations, and evaluate it empirically. We identify large potential gains from interhemispheric and global electricity trade by combining complementary seasonal and diurnal cycles. The corresponding high willingness to pay for large-scale transmission suggests far-reaching political economy and regulatory implications.

Suggested Citation

  • López Prol, Javier & Steininger, Karl W. & Williges, Keith & Grossmann, Wolf D. & Grossmann, Iris, 2023. "Potential gains of long-distance trade in electricity," Energy Economics, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:eneeco:v:124:y:2023:i:c:s0140988323002372
    DOI: 10.1016/j.eneco.2023.106739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323002372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    3. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    4. Steve Cicala, 2022. "Imperfect Markets versus Imperfect Regulation in US Electricity Generation," American Economic Review, American Economic Association, vol. 112(2), pages 409-441, February.
    5. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    6. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    7. Grossmann, Wolf D. & Grossmann, Iris & Steininger, Karl W., 2013. "Distributed solar electricity generation across large geographic areas, Part I: A method to optimize site selection, generation and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 831-843.
    8. Javier López Prol & Wolf-Peter Schill, 2021. "The Economics of Variable Renewable Energy and Electricity Storage," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 443-467, October.
    9. Jacobson, Mark Z., 2021. "The cost of grid stability with 100 % clean, renewable energy for all purposes when countries are isolated versus interconnected," Renewable Energy, Elsevier, vol. 179(C), pages 1065-1075.
    10. Stefan Ambec & Claude Crampes, 2019. "Decarbonizing Electricity Generation with Intermittent Sources of Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1105-1134.
    11. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    12. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    13. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    14. Bachner, Gabriel & Steininger, Karl W. & Williges, Keith & Tuerk, Andreas, 2019. "The economy-wide effects of large-scale renewable electricity expansion in Europe: The role of integration costs," Renewable Energy, Elsevier, vol. 134(C), pages 1369-1380.
    15. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    16. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    17. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    18. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    19. Antweiler, Werner & Muesgens, Felix, 2021. "On the long-term merit order effect of renewable energies," Energy Economics, Elsevier, vol. 99(C).
    20. David McCollum & Volker Krey & Peter Kolp & Yu Nagai & Keywan Riahi, 2014. "Transport electrification: A key element for energy system transformation and climate stabilization," Climatic Change, Springer, vol. 123(3), pages 651-664, April.
    21. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    22. Gorman, Will & Mills, Andrew & Wiser, Ryan, 2019. "Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy," Energy Policy, Elsevier, vol. 135(C).
    23. Heymi Bahar & Jehan Sauvage, 2013. "Cross-Border Trade in Electricity and the Development of Renewables-Based Electric Power: Lessons from Europe," OECD Trade and Environment Working Papers 2013/2, OECD Publishing.
    24. Schill, Wolf-Peter, 2020. "Electricity Storage and the Renewable Energy Transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4(10), pages 2059-2064.
    25. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    26. Egging-Bratseth, Ruud & Kauko, Hanne & Knudsen, Brage Rugstad & Bakke, Sara Angell & Ettayebi, Amina & Haufe, Ina Renate, 2021. "Seasonal storage and demand side management in district heating systems with demand uncertainty," Applied Energy, Elsevier, vol. 285(C).
    27. Green, Richard & Léautier, Thomas-Olivier, 2015. "Do costs fall faster than revenues? Dynamics of renewables entry into electricity markets," TSE Working Papers 15-591, Toulouse School of Economics (TSE).
    28. Grossmann, Wolf D. & Grossmann, Iris & Steininger, Karl W., 2014. "Solar electricity generation across large geographic areas, Part II: A Pan-American energy system based on solar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 983-993.
    29. Antweiler, Werner, 2016. "Cross-border trade in electricity," Journal of International Economics, Elsevier, vol. 101(C), pages 42-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    2. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    3. Javier L'opez Prol & Karl W. Steininger & Keith Williges & Wolf D. Grossmann & Iris Grossmann, 2022. "Potential gains of long-distance trade in electricity," Papers 2205.01436, arXiv.org.
    4. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.
    5. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    6. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    7. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    8. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    9. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    11. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    12. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    13. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    14. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    15. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    16. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    17. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    18. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    19. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    20. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).

    More about this item

    Keywords

    Economic development; Electrification; Renewables; Gains of trade;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • F60 - International Economics - - Economic Impacts of Globalization - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:124:y:2023:i:c:s0140988323002372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.