IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v64y2017icp363-372.html
   My bibliography  Save this article

Economic and technical challenges of flexible operations under large-scale variable renewable deployment

Author

Listed:
  • Bistline, John E.

Abstract

Fundamental characteristics of solar and wind power have generated controversy about their economic competitiveness and appropriate techniques for assessing their value. This research presents an approach to quantify the economic value of variable renewable capacity and demonstrates its dependence on renewable deployment levels, regional resource endowments, fleet flexibility, and trade assumptions. It assesses economic and technical impacts of large-scale renewable penetration by linking two models, representing electric-sector investments and detailed operations. Model results for California and Texas suggest that operational constraints and costs of dispatchable generators (e.g., minimum load levels, ramping limits, startup costs) can impact renewable integration costs, but the temporal and spatial variability of solar and wind are larger determinants of their value. Restrictions on transmission and regional coordination in capacity planning and dispatch decrease the economic value of variable renewable energy, highlighting the potential roles of market design and trade. Energy storage is shown to be a valuable balancing asset at higher solar and wind penetration levels, but potential revenues diminish with increased storage deployment.

Suggested Citation

  • Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
  • Handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:363-372
    DOI: 10.1016/j.eneco.2017.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317301196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reichelstein, Stefan & Sahoo, Anshuman, 2015. "Time of day pricing and the levelized cost of intermittent power generation," Energy Economics, Elsevier, vol. 48(C), pages 97-108.
    2. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    3. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    4. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    5. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    6. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    7. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    8. Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
    9. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    10. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    11. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.
    12. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    13. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    15. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    16. Gunturu, Udaya Bhaskar & Schlosser, C. Adam, 2015. "Behavior of the aggregate wind resource in the ISO regions in the United States," Applied Energy, Elsevier, vol. 144(C), pages 175-181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    2. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    4. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    5. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    6. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    7. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    8. René Aïd & Matteo Basei & Huyên Pham, 2017. "The coordination of centralised and distributed generation," Working Papers hal-01517165, HAL.
    9. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    10. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    11. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    12. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    13. Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland & Trømborg, Erik, 2017. "Power-to-heat as a flexibility measure for integration of renewable energy," Energy, Elsevier, vol. 128(C), pages 776-784.
    14. Ren'e Aid & Matteo Basei & Huy^en Pham, 2017. "A McKean-Vlasov approach to distributed electricity generation development," Papers 1705.01302, arXiv.org, revised Nov 2019.
    15. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    16. René Aïd & Matteo Basei & Huyên Pham, 2020. "A McKean–Vlasov approach to distributed electricity generation development," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 269-310, April.
    17. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    19. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    20. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.

    More about this item

    Keywords

    Renewable integration; Variable renewable energy; Power system planning; Flexible operations; Regional heterogeneity; Unit-commitment modeling;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • F18 - International Economics - - Trade - - - Trade and Environment
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:363-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.