IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v107y2022ics0140988322000391.html
   My bibliography  Save this article

One man's loss is another's gain: Does clean energy development reduce CO2 emissions in China? Evidence based on the spatial Durbin model

Author

Listed:
  • Chen, Yang
  • Shao, Shuai
  • Fan, Meiting
  • Tian, Zhihua
  • Yang, Lili

Abstract

With the increasing concerns of global climate change, clean energy development is regarded as one of the most important measures to mitigate CO2 emissions. However, existing studies pay little attention to the spatial spillover effect of clean energy development on CO2 emissions. Using a provincial-level panel data set during 1997–2017 and a spatial Durbin model, this is the first study to investigate the effect of clean energy development measured by the share of clean energy generation in total electricity generation on CO2 emissions in China. The results show that clean energy development causes less CO2 emissions in the local region but more CO2 emissions in spatially related regions. This finding is reinforced through a series of robustness checks. The heterogeneity analysis indicates that the local CO2 emission reduction effect of clean energy development is greater in the period of 2013–2017, electricity-poor regions, and low-carbon pilot regions; meanwhile, electricity-poor regions and low-carbon pilot regions suffer from a more adverse impact of clean energy development in spatially related regions on local CO2 emission reduction in the long run. Furthermore, the results of mechanism analysis suggest that the fossil energy saved by the usage of clean energy from the power generation sector in the local region flows into spatially related regions to crowd out clean energy consumption in these regions. Therefore, the overall effectiveness of CO2 emission reduction effort in clean energy development is partly undermined by the CO2 transfer effect. This paper provides a novel perspective to understand the effect of clean energy development on CO2 emission reduction and helps to promote inter-regional cooperative CO2 emission reduction within a country.

Suggested Citation

  • Chen, Yang & Shao, Shuai & Fan, Meiting & Tian, Zhihua & Yang, Lili, 2022. "One man's loss is another's gain: Does clean energy development reduce CO2 emissions in China? Evidence based on the spatial Durbin model," Energy Economics, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000391
    DOI: 10.1016/j.eneco.2022.105852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322000391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.105852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhihua & Tian, Yanfang & Shen, Liangping & Shao, Shuai, 2021. "The health effect of household cooking fuel choice in China: An urban-rural gap perspective," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    3. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    4. Adamantiades, A. & Kessides, I., 2009. "Nuclear power for sustainable development: Current status and future prospects," Energy Policy, Elsevier, vol. 37(12), pages 5149-5166, December.
    5. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    6. Peters, Jeffrey C., 2017. "Natural gas and spillover from the US Clean Power Plan into the Paris Agreement," Energy Policy, Elsevier, vol. 106(C), pages 41-47.
    7. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    8. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    9. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    10. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    11. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    12. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    13. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
    14. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    15. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    16. Ozturk, Ilhan & Acaravci, Ali, 2010. "CO2 emissions, energy consumption and economic growth in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3220-3225, December.
    17. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    18. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    19. Facundo Albornoz & Matthew A. Cole & Robert J. R. Elliott & Marco G. Ercolani, 2009. "In Search of Environmental Spillovers," The World Economy, Wiley Blackwell, vol. 32(1), pages 136-163, January.
    20. Zheng-Xin Wang, 2015. "A Predictive Analysis of Clean Energy Consumption, Economic Growth and Environmental Regulation in China Using an Optimized Grey Dynamic Model," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 437-453, October.
    21. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    22. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    23. AlFarra, Hasan Jamil & Abu-Hijleh, Bassam, 2012. "The potential role of nuclear energy in mitigating CO2 emissions in the United Arab Emirates," Energy Policy, Elsevier, vol. 42(C), pages 272-285.
    24. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    25. Sudhakara Reddy, B. & Assenza, Gaudenz B., 2009. "The great climate debate," Energy Policy, Elsevier, vol. 37(8), pages 2997-3008, August.
    26. Benjamin K. Sovacool & Patrick Schmid & Andy Stirling & Goetz Walter & Gordon MacKerron, 2020. "Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power," Nature Energy, Nature, vol. 5(11), pages 928-935, November.
    27. DeCanio, Stephen J., 2009. "The political economy of global carbon emissions reductions," Ecological Economics, Elsevier, vol. 68(3), pages 915-924, January.
    28. Bourgeon, Jean-Marc & Ollivier, Hélène, 2012. "Is bioenergy trade good for the environment?," European Economic Review, Elsevier, vol. 56(3), pages 411-421.
    29. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    30. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    31. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    32. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    33. Roger J. Francey & Cathy M. Trudinger & Marcel van der Schoot & Rachel M. Law & Paul B. Krummel & Ray L. Langenfelds & L. Paul Steele & Colin E. Allison & Ann R. Stavert & Robert J. Andres & Christian, 2013. "Erratum: Atmospheric verification of anthropogenic CO2 emission trends," Nature Climate Change, Nature, vol. 3(8), pages 764-764, August.
    34. Roger J. Francey & Cathy M. Trudinger & Marcel van der Schoot & Rachel M. Law & Paul B. Krummel & Ray L. Langenfelds & L. Paul Steele & Colin E. Allison & Ann R. Stavert & Robert J. Andres & Christian, 2013. "Atmospheric verification of anthropogenic CO2 emission trends," Nature Climate Change, Nature, vol. 3(5), pages 520-524, May.
    35. Shao, Shuai & Tian, Zhihua & Yang, Lili, 2017. "High speed rail and urban service industry agglomeration: Evidence from China's Yangtze River Delta region," Journal of Transport Geography, Elsevier, vol. 64(C), pages 174-183.
    36. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    37. Jarke, Johannes & Perino, Grischa, 2017. "Do renewable energy policies reduce carbon emissions? On caps and inter-industry leakage," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 102-124.
    38. Patricia C. Melo & Daniel J. Graham, 2014. "Testing for labour pooling as a source of agglomeration economies: Evidence for labour markets in England and Wales," Papers in Regional Science, Wiley Blackwell, vol. 93(1), pages 31-52, March.
    39. Lee, Jung Wan, 2013. "The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth," Energy Policy, Elsevier, vol. 55(C), pages 483-489.
    40. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
    41. Yang, Zhenbing & Shao, Shuai & Yang, Lili, 2021. "Unintended consequences of carbon regulation on the performance of SOEs in China: The role of technical efficiency," Energy Economics, Elsevier, vol. 94(C).
    42. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    43. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Li, Na & Liu, Feng, 2022. "Spatiotemporal characteristics and influencing factors of renewable energy production in China: A spatial econometric analysis," Energy Economics, Elsevier, vol. 116(C).
    2. Chai, Jian & Tian, Lingyue & Jia, Ruining, 2023. "New energy demonstration city, spatial spillover and carbon emission efficiency: Evidence from China's quasi-natural experiment," Energy Policy, Elsevier, vol. 173(C).
    3. Ying Xie & Minglong Zhang, 2023. "Influence of Clean Energy and Financial Structure on China’s Provincial Carbon Emission Efficiency—Empirical Analysis Based on Spatial Spillover Effects," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    4. Nan, Shijing & Huo, Yuchen & You, Wanhai & Guo, Yawei, 2022. "Globalization spatial spillover effects and carbon emissions: What is the role of economic complexity?," Energy Economics, Elsevier, vol. 112(C).
    5. Huang, Xiaoling & Tian, Peng, 2023. "Polluting thy neighbor or benefiting thy neighbor: Effects of the clean energy development on haze pollution in China," Energy, Elsevier, vol. 268(C).
    6. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    7. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    8. Wang, Hui & Zhang, Yunyun & Lin, Weifen & Wei, Wendong, 2023. "Transregional electricity transmission and carbon emissions: Evidence from ultra-high voltage transmission projects in China," Energy Economics, Elsevier, vol. 123(C).
    9. Yan, Yu & Huang, Junbing, 2022. "The role of population agglomeration played in China's carbon intensity: A city-level analysis," Energy Economics, Elsevier, vol. 114(C).
    10. Botao Jiang & Zhisong He & Wei Xue & Cheng Yang & Hanbo Zhu & Yifei Hua & Bin Lu, 2022. "China’s Low-Carbon Cities Pilot Promotes Sustainable Carbon Emission Reduction: Evidence from Quasi-Natural Experiments," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    11. Shuping Cheng & Lingjie Meng & Weizhong Wang, 2022. "The Impact of Environmental Regulation on Green Energy Technology Innovation—Evidence from China," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    12. Ge, Tao & Li, Chunying & Li, Jinye & Hao, Xionglei, 2023. "Does neighboring green development benefit or suffer from local economic growth targets? Evidence from China," Economic Modelling, Elsevier, vol. 120(C).
    13. Peng, Hui & Lu, Yaobin & Wang, Qunwei, 2023. "How does heterogeneous industrial agglomeration affect the total factor energy efficiency of China's digital economy," Energy, Elsevier, vol. 268(C).
    14. Nan, Shijing & Huo, Yuchen & Lee, Chien-Chiang, 2023. "Assessing the role of globalization on renewable energy consumption: New evidence from a spatial econometric analysis," Renewable Energy, Elsevier, vol. 215(C).
    15. Sofia Karagiannopoulou & Grigoris Giannarakis & Emilios Galariotis & Constantin Zopounidis & Nikolaos Sariannidis, 2022. "The Impact of Dow Jones Sustainability Index, Exchange Rate and Consumer Sentiment Index on Carbon Emissions," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    16. Yuanyuan Chen & Xinli Ke & Min Min & Yue Zhang & Yaqiang Dai & Lanping Tang, 2022. "Do We Need More Urban Green Space to Alleviate PM 2.5 Pollution? A Case Study in Wuhan, China," Land, MDPI, vol. 11(6), pages 1-16, May.
    17. Berna Serener & Dervis Kirikkaleli & Kwaku Addai, 2022. "Patents on Environmental Technologies, Financial Development, and Environmental Degradation in Sweden: Evidence from Novel Fourier-Based Approaches," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    18. Wang, Qingxi & Hu, An & Tian, Zhihua, 2022. "Digital transformation and electricity consumption: Evidence from the Broadband China pilot policy," Energy Economics, Elsevier, vol. 115(C).
    19. Shenhai Huang & Chao Du & Xian Jin & Daini Zhang & Shiyan Wen & Yu’an Wang & Zhenyu Cheng & Zhijie Jia, 2022. "The Boundary of Porter Hypothesis: The Energy and Economic Impact of China’s Carbon Neutrality Target in 2060," Energies, MDPI, vol. 15(23), pages 1-18, December.
    20. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    2. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    3. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    4. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    5. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    6. Rahman, Mohammad Mafizur & Vu, Xuan-Binh, 2020. "The nexus between renewable energy, economic growth, trade, urbanisation and environmental quality: A comparative study for Australia and Canada," Renewable Energy, Elsevier, vol. 155(C), pages 617-627.
    7. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    8. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    9. Mariola Piłatowska & Andrzej Geise, 2021. "Impact of Clean Energy on CO 2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries," Energies, MDPI, vol. 14(4), pages 1-24, February.
    10. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 173-185.
    11. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    12. Ben Youssef, Adel & Hammoudeh, Shawkat & Omri, Anis, 2016. "Simultaneity modeling analysis of the environmental Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 60(C), pages 266-274.
    13. Le, Thanh Ha, 2022. "Connectedness between nonrenewable and renewable energy consumption, economic growth and CO2 emission in Vietnam: New evidence from a wavelet analysis," Renewable Energy, Elsevier, vol. 195(C), pages 442-454.
    14. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    15. Zheng, Huanyu & Song, Malin & Shen, Zhiyang, 2021. "The evolution of renewable energy and its impact on carbon reduction in China," Energy, Elsevier, vol. 237(C).
    16. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model," Energy, Elsevier, vol. 119(C), pages 453-471.
    17. Ben Jebli, Mehdi & Ben Youssef, Slim & Ozturk, Ilhan, 2013. "The Environmental Kuznets Curve: The Role of Renewable and Non-Renewable Energy Consumption and Trade Openness," MPRA Paper 51672, University Library of Munich, Germany.
    18. Le Thanh Ha & Nguyen Thi Thanh Huyen, 2022. "Dynamic Connectedness between Renewable and Nonrenewable Energy Consumptions, Economic Growth and Carbon Dioxide Emissions in Vietnam: Extension of the TVP-VAR Joint Connected Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 361-372, May.
    19. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    20. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.