IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i6-7p1669-1674.html
   My bibliography  Save this article

What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?

Author

Listed:
  • Chiu, Chien-Liang
  • Chang, Ting-Huan

Abstract

In spite of increasing numbers of countries having established renewable energy development mechanisms for carbon dioxide (CO2) emissions reduction, the CO2 emissions problem continues to worsen along with the growth of the world economy. This leads us to examine the threshold effect of the proportion of renewable energy supply for CO2 emissions reduction by means of the panel threshold regression model (PTR). Economic growth and the price of energy are also both taken into account in the model in measuring the specific influence that each of them has on CO2 emissions. The empirical panel data encompass all 30 member countries of the OECD and cover a period of about a decade in length from 1996 to 2005. Our empirical results provide clear evidence of the existence of a single threshold effect that may be divided into lower and higher regimes. Based on the specific estimates of the slope coefficients in each regime distinguished, we find that a renewable energy supply accounting for at least 8.3889% of total energy supply would mean that CO2 emissions would start to be mitigated. Furthermore, real GDP and the CPI of energy are significantly and positively and insignificantly and negatively correlated with CO2 emissions, respectively. These findings lead us to conclude that the authorities ought to enhance the proportion of renewable energy supply to more than 8.3889% of all energy supplied, which might help resolve the dilemma between economic growth and CO2 emissions. Realizing the effects of CO2 emissions reduction via energy price reforms or the levying of a carbon tax levy may, however, still remain a puzzle.

Suggested Citation

  • Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1669-1674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00172-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D. P., 2002. "The role of renewable energy sources within the framework of the Kyoto Protocol: the case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 247-269, September.
    2. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    3. Tanatvanit, Somporn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2003. "Sustainable energy development strategies: implications of energy demand management and renewable energy in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 367-395, October.
    4. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    5. Al-Abdullah, Anwar Y., 1999. "The Carbon-tax debate," Applied Energy, Elsevier, vol. 64(1-4), pages 3-13, September.
    6. Dinda, Soumyananda & Coondoo, Dipankor, 2006. "Income and emission: A panel data-based cointegration analysis," Ecological Economics, Elsevier, vol. 57(2), pages 167-181, May.
    7. Hernandez, Felix & Gual, Miguel Angel & Rio, Pablo Del & Caparros, Alejandro, 2004. "Energy sustainability and global warming in Spain," Energy Policy, Elsevier, vol. 32(3), pages 383-394, February.
    8. Wisniewski, Grzegorz & Rogulska, Magdalena & Grzybek, Anna & Pietruszko, Stanislaw M., 1995. "The role of renewable energy in carbon dioxide emission reduction in Poland," Applied Energy, Elsevier, vol. 52(2-3), pages 291-298.
    9. Kelly, Nick, 2006. "The role of energy efficiency in reducing Scottish and UK CO2 emissions," Energy Policy, Elsevier, vol. 34(18), pages 3505-3515, December.
    10. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    11. Ekins, Paul, 1996. "How large a carbon tax is justified by the secondary benefits of CO2 abatement?," Resource and Energy Economics, Elsevier, vol. 18(2), pages 161-187, June.
    12. Friedl, Birgit & Getzner, Michael, 2003. "Determinants of CO2 emissions in a small open economy," Ecological Economics, Elsevier, vol. 45(1), pages 133-148, April.
    13. Moreno, Blanca & López, Ana Jesús, 2008. "The effect of renewable energy on employment. The case of Asturias (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 732-751, April.
    14. Shafik, Nemat, 1994. "Economic Development and Environmental Quality: An Econometric Analysis," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 757-773, Supplemen.
    15. F. Hernández & M.Á. Gual & P. del Río & A. Caparrós, 2004. "Energy sustainability and global warming in Spain," Post-Print hal-00716328, HAL.
    16. Suri, Vivek & Chapman, Duane, 1998. "Economic growth, trade and energy: implications for the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 25(2), pages 195-208, May.
    17. Agras, Jean & Chapman, Duane, 1999. "A dynamic approach to the Environmental Kuznets Curve hypothesis," Ecological Economics, Elsevier, vol. 28(2), pages 267-277, February.
    18. Sasmojo, Saswinadi & Tasrif, Muhammad, 1991. "CO2 emissions reduction by price deregulation and fossil fuel taxation : A case study of Indonesia," Energy Policy, Elsevier, vol. 19(10), pages 970-977, December.
    19. Tucker, Michael, 1995. "Carbon dioxide emissions and global GDP," Ecological Economics, Elsevier, vol. 15(3), pages 215-223, December.
    20. Martinsen, Dag & Krey, Volker & Markewitz, Peter, 2007. "Implications of high energy prices for energy system and emissions--The response from an energy model for Germany," Energy Policy, Elsevier, vol. 35(9), pages 4504-4515, September.
    21. Coondoo, Dipankor & Dinda, Soumyananda, 2002. "Causality between income and emission: a country group-specific econometric analysis," Ecological Economics, Elsevier, vol. 40(3), pages 351-367, March.
    22. Onishi, Akira, 2007. "The impact of CO2 emissions on the world economy: Policy simulations of FUGI global model," Journal of Policy Modeling, Elsevier, vol. 29(6), pages 797-819.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    2. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    3. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    4. Duc Khuong Nguyen & Benoît Sévi & Bo Sjö & Gazi Salah Uddin, 2017. "The role of trade openness and investment in examining the energy-growth-pollution nexus: empirical evidence for China and India," Applied Economics, Taylor & Francis Journals, vol. 49(40), pages 4083-4098, August.
    5. Miguel Rodríguez & Yolanda Pena-Boquete, 2013. "Mishandling carbon intensities," Working Papers 1302, Universidade de Vigo, Departamento de Economía Aplicada.
    6. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    7. Xiaosheng Li & Xia Yan & Qingxian An & Ke Chen & Zhen Shen, 2016. "The coordination between China’s economic growth and environmental emission from the Environmental Kuznets Curve viewpoint," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 233-252, August.
    8. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    9. Shahbaz, Muhammad & Kumar Tiwari, Aviral & Nasir, Muhammad, 2013. "The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa," Energy Policy, Elsevier, vol. 61(C), pages 1452-1459.
    10. Muhammad, Shahbaz & Tiwari, Aviral & Muhammad, Nasir, 2011. "The effects of financial development, economic growth, coal consumption and trade openness on environment performance in South Africa," MPRA Paper 32723, University Library of Munich, Germany, revised 10 Aug 2011.
    11. Lin, Shih-Mo, 2003. "High-Tech Industries Development and Its Impact on Energy Use and the Environment of Taiwan," Conference papers 331110, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Jie He, 2007. "Is the Environmental Kuznets Curve hypothesis valid for developing countries? A survey," Cahiers de recherche 07-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    13. Lotfalipour, Mohammad Reza & Falahi, Mohammad Ali & Ashena, Malihe, 2010. "Economic growth, CO2 emissions, and fossil fuels consumption in Iran," Energy, Elsevier, vol. 35(12), pages 5115-5120.
    14. Lantz, V. & Feng, Q., 2006. "Assessing income, population, and technology impacts on CO2 emissions in Canada: Where's the EKC?," Ecological Economics, Elsevier, vol. 57(2), pages 229-238, May.
    15. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    16. Valeria Costantini & Chiara Martini, 2010. "A Modified Environmental Kuznets Curve for sustainable development assessment using panel data," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 84-122.
    17. Cerdeira Bento, João Paulo, 2014. "The determinants of CO2 emissions: empirical evidence from Italy," MPRA Paper 59166, University Library of Munich, Germany.
    18. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    19. Nasir, Muhammad & Ur Rehman, Faiz, 2011. "Environmental Kuznets Curve for carbon emissions in Pakistan: An empirical investigation," Energy Policy, Elsevier, vol. 39(3), pages 1857-1864, March.
    20. P. Srinivasan & Inder Siddanth Ravindra, 2015. "Causality among Energy Consumption, CO2 Emission, Economic Growth and Trade," Foreign Trade Review, , vol. 50(3), pages 168-189, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1669-1674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.