IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v106y2022ics0140988321005703.html
   My bibliography  Save this article

Valuing investments in domestic PV-Battery Systems under uncertainty

Author

Listed:
  • Andreolli, Francesca
  • D’Alpaos, Chiara
  • Moretto, Michele

Abstract

Renewable energy technologies are expected to play a major role in mitigating climate change and resource depletion effects as well as in contributing to domestic energy security. Due to the intermittent nature of solar photovoltaic (PV), there are often significant gaps between energy consumption and energy supply by PV plants. This makes storage systems a potential option to maximize savings and accrue managerial flexibility by increasing the share of self-consumed energy while guaranteeing adequate power levels in distribution grids.

Suggested Citation

  • Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
  • Handle: RePEc:eee:eneeco:v:106:y:2022:i:c:s0140988321005703
    DOI: 10.1016/j.eneco.2021.105721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988321005703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    2. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    3. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    4. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2018. "Use of weather forecast for increasing the self-consumption rate of home solar systems: An Italian case study," Applied Energy, Elsevier, vol. 212(C), pages 746-758.
    5. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    6. Boampong, Richard & Brown, David P., 2020. "On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design," Energy Economics, Elsevier, vol. 86(C).
    7. Ciabattoni, Lucio & Grisostomi, Massimo & Ippoliti, Gianluca & Longhi, Sauro, 2014. "Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario," Energy, Elsevier, vol. 74(C), pages 359-367.
    8. Yanbin Li & Min Wu & Zhen Li, 2018. "A Real Options Analysis for Renewable Energy Investment Decisions under China Carbon Trading Market," Energies, MDPI, vol. 11(7), pages 1-10, July.
    9. Hagspiel, Verena & Huisman, Kuno J.M. & Kort, Peter M. & Nunes, Cláudia, 2016. "How to escape a declining market: Capacity investment or Exit?," European Journal of Operational Research, Elsevier, vol. 254(1), pages 40-50.
    10. Pan, Yingjie & Yao, Xing & Wang, Xin & Zhu, Lei, 2019. "Policy uncertainties: What investment choice for solar panel producers?," Energy Economics, Elsevier, vol. 78(C), pages 454-467.
    11. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    12. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    13. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.
    14. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    15. Merei, Ghada & Moshövel, Janina & Magnor, Dirk & Sauer, Dirk Uwe, 2016. "Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications," Applied Energy, Elsevier, vol. 168(C), pages 171-178.
    16. Lang, Tillmann & Ammann, David & Girod, Bastien, 2016. "Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings," Renewable Energy, Elsevier, vol. 87(P1), pages 77-87.
    17. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    18. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    19. Simona Bigerna, Carlo Andrea Bollino and Paolo Polinori, 2016. "Renewable Energy and Market Power in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    20. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Castro-Gil, Manuel, 2012. "Profitability analysis of grid-connected photovoltaic facilities for household electricity self-sufficiency," Energy Policy, Elsevier, vol. 51(C), pages 749-764.
    21. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    22. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    23. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    24. Moshövel, Janina & Kairies, Kai-Philipp & Magnor, Dirk & Leuthold, Matthias & Bost, Mark & Gährs, Swantje & Szczechowicz, Eva & Cramer, Moritz & Sauer, Dirk Uwe, 2015. "Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption," Applied Energy, Elsevier, vol. 137(C), pages 567-575.
    25. Dato, Prudence & Durmaz, Tunç & Pommeret, Aude, 2020. "Smart grids and renewable electricity generation by households," Energy Economics, Elsevier, vol. 86(C).
    26. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    27. Alexander, David Richard & Mo, Mengjia & Stent, Alan Fraser, 2012. "Arithmetic Brownian motion and real options," European Journal of Operational Research, Elsevier, vol. 219(1), pages 114-122.
    28. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    29. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    30. Mauricio B. C. Salles & Junling Huang & Michael J. Aziz & William W. Hogan, 2017. "Potential Arbitrage Revenue of Energy Storage Systems in PJM," Energies, MDPI, vol. 10(8), pages 1-19, July.
    31. Nguyen, Su & Peng, Wei & Sokolowski, Peter & Alahakoon, Damminda & Yu, Xinghuo, 2018. "Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 228(C), pages 2567-2580.
    32. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    33. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    34. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    35. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    36. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    37. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    38. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    39. Bar-Ilan, Avner & Strange, William C., 1999. "The Timing and Intensity of Investment," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 57-77, January.
    40. Martínez Ceseña, E.A. & Mutale, J. & Rivas-Dávalos, F., 2013. "Real options theory applied to electricity generation projects: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 573-581.
    41. Tveten, Åsa Grytli & Bolkesjø, Torjus Folsland & Martinsen, Thomas & Hvarnes, Håvard, 2013. "Solar feed-in tariffs and the merit order effect: A study of the German electricity market," Energy Policy, Elsevier, vol. 61(C), pages 761-770.
    42. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    43. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    44. Zucker, Andreas & Hinchliffe, Timothée, 2014. "Optimum sizing of PV-attached electricity storage according to power market signals – A case study for Germany and Italy," Applied Energy, Elsevier, vol. 127(C), pages 141-155.
    45. Nyholm, Emil & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Solar photovoltaic-battery systems in Swedish households – Self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 183(C), pages 148-159.
    46. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    47. Tian, Lixin & Pan, Jianglai & Du, Ruijin & Li, Wenchao & Zhen, Zaili & Qibing, Gao, 2017. "The valuation of photovoltaic power generation under carbon market linkage based on real options," Applied Energy, Elsevier, vol. 201(C), pages 354-362.
    48. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    49. Crespo Del Granado, Pedro & Pang, Zhan & Wallace, Stein W., 2016. "Synergy of smart grids and hybrid distributed generation on the value of energy storage," Applied Energy, Elsevier, vol. 170(C), pages 476-488.
    50. Uddin, Kotub & Gough, Rebecca & Radcliffe, Jonathan & Marco, James & Jennings, Paul, 2017. "Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom," Applied Energy, Elsevier, vol. 206(C), pages 12-21.
    51. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    52. Dietrich, Andreas & Weber, Christoph, 2018. "What drives profitability of grid-connected residential PV storage systems? A closer look with focus on Germany," Energy Economics, Elsevier, vol. 74(C), pages 399-416.
    53. Aida Arik, 2017. "Residential Battery Systems and the Best Time to Invest A case study of Hawaii," Working Papers 2017-9, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    54. Tae Yong Jung & Donghun Kim & Jongwoo Moon & SeoKyung Lim, 2018. "A Scenario Analysis of Solar Photovoltaic Grid Parity in the Maldives: The Case of Malahini Resort," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    55. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    56. Few, Sheridan & Schmidt, Oliver & Offer, Gregory J. & Brandon, Nigel & Nelson, Jenny & Gambhir, Ajay, 2018. "Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: An analysis informed by expert elicitations," Energy Policy, Elsevier, vol. 114(C), pages 578-590.
    57. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    58. Cherrelle Eid & Paul Codani & Yannick Perez & Javier Reneses & Rudi Hakvoort, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Post-Print hal-01792419, HAL.
    59. Olaszi, Balint D. & Ladanyi, Jozsef, 2017. "Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 710-718.
    60. Khalilpour, Rajab & Vassallo, Anthony, 2016. "Planning and operation scheduling of PV-battery systems: A novel methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 194-208.
    61. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    62. Dangl, Thomas, 1999. "Investment and capacity choice under uncertain demand," European Journal of Operational Research, Elsevier, vol. 117(3), pages 415-428, September.
    63. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    64. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    65. Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Long-run power storage requirements for high shares of renewables: Results and sensitivities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 156-171.
    66. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    67. Kitapbayev, Yerkin & Moriarty, John & Mancarella, Pierluigi, 2015. "Stochastic control and real options valuation of thermal storage-enabled demand response from flexible district energy systems," Applied Energy, Elsevier, vol. 137(C), pages 823-831.
    68. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    69. Karakaya, Emrah & Sriwannawit, Pranpreya, 2015. "Barriers to the adoption of photovoltaic systems: The state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 60-66.
    70. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    71. Locatelli, Giorgio & Invernizzi, Diletta Colette & Mancini, Mauro, 2016. "Investment and risk appraisal in energy storage systems: A real options approach," Energy, Elsevier, vol. 104(C), pages 114-131.
    72. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    73. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    74. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    75. Stephen Comello & Stefan Reichelstein, 2019. "The emergence of cost effective battery storage," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    76. Hagspiel, Verena & Huisman, Kuno J.M. & Kort, Peter M., 2016. "Volume flexibility and capacity investment under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 178(C), pages 95-108.
    77. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    78. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    79. Mariaud, Arthur & Acha, Salvador & Ekins-Daukes, Ned & Shah, Nilay & Markides, Christos N., 2017. "Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings," Applied Energy, Elsevier, vol. 199(C), pages 466-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sai Bravo & Carole Haritchabalet, 2023. "Prosumers: Grid Storage vs Small Fuel-Cell," Working Papers hal-04119625, HAL.
    2. Andreolli, Francesca & D'Alpaos, Chiara & Kort, Peter, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," FEEM Working Papers 330498, Fondazione Eni Enrico Mattei (FEEM).
    3. Matschegg, Doris & Carlon, Elisa & Sturmlechner, Rita & Sonnleitner, Andrea & Fuhrmann, Marilene & Dißauer, Christa & Strasser, Christoph & Enigl, Monika, 2023. "Investigation of individual motives and decision paths on residential energy supply systems," Energy, Elsevier, vol. 281(C).
    4. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    5. Sai Bravo & Carole Haritchabalet, 2023. "Prosumers: Grid Storage vs Small Fuel-Cell," Working papers of Transitions Energétiques et Environnementales (TREE) hal-04119625, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreolli, Francesca & D'Alpaos, Chiara & Kort, Peter, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," FEEM Working Papers 330498, Fondazione Eni Enrico Mattei (FEEM).
    2. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    3. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    4. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    5. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    7. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    8. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    9. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    10. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    11. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    12. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    13. Olivella, Jordi & Domenech, Bruno & Calleja, Gema, 2021. "Potential of implementation of residential photovoltaics at city level: The case of London," Renewable Energy, Elsevier, vol. 180(C), pages 577-585.
    14. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    15. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    16. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    17. Bertolini, Marina & D’Alpaos, Chiara & Moretto, Michele, 2016. "Investing in Photovoltaics: Timing, Plant Sizing and Smart Grids Flexibility," MITP: Mitigation, Innovation and Transformation Pathways 244540, Fondazione Eni Enrico Mattei (FEEM).
    18. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    19. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    20. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.

    More about this item

    Keywords

    PV plants; Energy storage; Real options; Stochastic optimization; Households;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:106:y:2022:i:c:s0140988321005703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.