IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v299y2022i2p768-779.html
   My bibliography  Save this article

Fat tails, serial dependence, and implied volatility index connections

Author

Listed:
  • Ellington, Michael

Abstract

This paper accounts for fat tails and serial dependence for implied volatility index network connections among equity and commodity markets using Bayesian vector heterogeneous autoregressions. I analyse the information content of such connections over short-, medium- and long-horizons for predicting underlying asset returns and whether conventional asset pricing risk factors explain the variation of portfolios that sort on directional connections. Including network connections within the information set yields significant gains when forecasting underlying asset returns. Sorting underlying assets on directional connections shows that investors can hedge against temporary changes to investment opportunities at horizons of less than one month.

Suggested Citation

  • Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.
  • Handle: RePEc:eee:ejores:v:299:y:2022:i:2:p:768-779
    DOI: 10.1016/j.ejor.2021.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721008146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2022. "Asymmetric Network Connectedness of Fears," The Review of Economics and Statistics, MIT Press, vol. 104(6), pages 1304-1316, November.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    5. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    6. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    7. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    8. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    9. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
    10. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    11. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    12. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    13. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    14. Bernard Herskovic & Bryan Kelly & Hanno Lustig & Stijn Van Nieuwerburgh, 2020. "Firm Volatility in Granular Networks," Journal of Political Economy, University of Chicago Press, vol. 128(11), pages 4097-4162.
    15. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    16. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    17. Sun, Edward W. & Meinl, Thomas, 2012. "A new wavelet-based denoising algorithm for high-frequency financial data mining," European Journal of Operational Research, Elsevier, vol. 217(3), pages 589-599.
    18. Ian Dew-Becker & Stefano Giglio, 2016. "Asset Pricing in the Frequency Domain: Theory and Empirics," The Review of Financial Studies, Society for Financial Studies, vol. 29(8), pages 2029-2068.
    19. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    20. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    21. Robert F. Engle & Giampiero M. Gallo & Margherita Velucchi, 2012. "Volatility Spillovers in East Asian Financial Markets: A Mem-Based Approach," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 222-223, February.
    22. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    23. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    24. Geraci, Marco Valerio & Gnabo, Jean-Yves, 2018. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying Vector Autoregressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1371-1390, June.
    25. Stefanos Dimitrakopoulos & Michalis Kolossiatis, 2020. "Bayesian analysis of moving average stochastic volatility models: modeling in-mean effects and leverage for financial time series," Econometric Reviews, Taylor & Francis Journals, vol. 39(4), pages 319-343, April.
    26. Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016. "The common factor in idiosyncratic volatility: Quantitative asset pricing implications," Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
    27. Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2012. "Commodity Liquidity Measurement and Transaction Costs," Review of Financial Studies, Society for Financial Studies, vol. 25(2), pages 599-638.
    28. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    29. Barigozzi, Matteo & Hallin, Marc & Soccorsi, Stefano & von Sachs, Rainer, 2021. "Time-varying general dynamic factor models and the measurement of financial connectedness," Journal of Econometrics, Elsevier, vol. 222(1), pages 324-343.
    30. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    31. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    32. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    33. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    34. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    35. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    36. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    37. Zihui Yang & Yinggang Zhou, 2017. "Quantitative Easing and Volatility Spillovers Across Countries and Asset Classes," Management Science, INFORMS, vol. 63(2), pages 333-354, February.
    38. Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
    39. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
    40. Haroon Mumtaz & Konstantinos Theodoridis, 2018. "The Changing Transmission of Uncertainty Shocks in the U.S," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 239-252, April.
    41. Joshua C. C. Chan, 2020. "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
    42. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yfanti, Stavroula & Karanasos, Menelaos & Zopounidis, Constantin & Christopoulos, Apostolos, 2023. "Corporate credit risk counter-cyclical interdependence: A systematic analysis of cross-border and cross-sector correlation dynamics," European Journal of Operational Research, Elsevier, vol. 304(2), pages 813-831.
    2. Kumar, Pawan & Singh, Vipul Kumar, 2022. "Does crude oil fire the emerging markets currencies contagion spillover? A systemic perspective," Energy Economics, Elsevier, vol. 116(C).
    3. Luo, Jiawen & Marfatia, Hardik A. & Ji, Qiang & Klein, Tony, 2023. "Co-volatility and asymmetric transmission of risks between the global oil and China's futures markets," Energy Economics, Elsevier, vol. 117(C).
    4. Leong, Soon Heng & Urga, Giovanni, 2023. "A practical multivariate approach to testing volatility spillover," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Barunik & Michael Ellington, 2020. "Dynamic Network Risk," Papers 2006.04639, arXiv.org, revised Jul 2020.
    2. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    3. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    4. Uluceviz, Erhan & Yilmaz, Kamil, 2021. "Measuring real–financial connectedness in the U.S. economy," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    5. Mert Demirer & Umut Gokcen & Kamil Yilmaz, 2018. "Financial Sector Volatility Connectedness and Equity Returns," Koç University-TUSIAD Economic Research Forum Working Papers 1803, Koc University-TUSIAD Economic Research Forum.
    6. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    7. Brož, Václav & Kočenda, Evžen, 2022. "Mortgage-related bank penalties and systemic risk among U.S. banks," Journal of International Money and Finance, Elsevier, vol. 122(C).
    8. Andrieş, Alin Marius & Ongena, Steven & Sprincean, Nicu & Tunaru, Radu, 2022. "Risk spillovers and interconnectedness between systemically important institutions," Journal of Financial Stability, Elsevier, vol. 58(C).
    9. Lin, Sihan & Chen, Shoudong, 2021. "Dynamic connectedness of major financial markets in China and America," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 646-656.
    10. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    11. Manuela Pedio, 2021. "Option-Implied Network Measures of Tail Contagion and Stock Return Predictability," BAFFI CAREFIN Working Papers 21154, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    12. Jozef Barunik & Mattia Bevilacqua & Michael Ellington, 2023. "Common Firm-level Investor Fears: Evidence from Equity Options," Papers 2309.03968, arXiv.org.
    13. Iwanicz-Drozdowska, Małgorzata & Rogowicz, Karol & Kurowski, Łukasz & Smaga, Paweł, 2021. "Two decades of contagion effect on stock markets: Which events are more contagious?," Journal of Financial Stability, Elsevier, vol. 55(C).
    14. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    15. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    16. Kamil Yilmaz, 2018. "Bank Volatility Connectedness in South East Asia," Koç University-TUSIAD Economic Research Forum Working Papers 1807, Koc University-TUSIAD Economic Research Forum.
    17. Panzica, Roberto Calogero, 2018. "Idiosyncratic volatility puzzle: The role of assets' interconnections," SAFE Working Paper Series 228, Leibniz Institute for Financial Research SAFE.
    18. Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2022. "Asymmetric Network Connectedness of Fears," The Review of Economics and Statistics, MIT Press, vol. 104(6), pages 1304-1316, November.
    19. Yang, Zihui & Zhou, Yinggang, 2018. "Systemic Risk in Global Volatility Spillover Networks: Evidence from Option-implied Volatility Indices," IRTG 1792 Discussion Papers 2018-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:299:y:2022:i:2:p:768-779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.