IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v348y2017icp25-32.html
   My bibliography  Save this article

Index decomposition analysis of urban crop water footprint

Author

Listed:
  • Zhao, X.
  • Tillotson, M.R.
  • Liu, Y.W.
  • Guo, W.
  • Yang, A.H.
  • Li, Y.F.

Abstract

Rapid urbanization has resulted in often unplanned increases in population, and food demand in cities. Historically, hinterlands to these cities have acted as breadbaskets producing food to the urban residents. Accordingly, a large amount of available freshwater has been needed to support these croplands. However, the rapid expansion of cities in developing countries has significantly changed both the croplands around cities and the water demand. It is thus important to quantitatively investigate the water-food nexus of cities related to the changing hinterland agriculture. Water footprint is an indicator reflecting the human impact on water. In this study, we quantified both the blue and green water footprint of major crop products in Suzhou city, China using a bottom-up accounting method. A novel decomposition analysis was carried out with a Logarithmic Mean Divisia Index (LMDI) method to study the driving forces that changed the water footprint during the period 2001–2010. The drivers were designed to reflect the factors related to farmland, such as yield and crop area. This is different from previous decomposition analyses, which focused on economic factors such as GDP. The results show that the crop water footprint of Suzhou city has seen a general decreasing trend between 2001 and 2010. The decomposition analysis showed that the decline of crop area was the main driver that decreased the crop water footprint, followed by the virtual water content (water consumption per unit of production). In contrast the changes of crop combination and yield contributed to an increase in the crop water footprint. Although the shrink of urban croplands decreased the water footprint of crop products. Cities’ increasing demand for food will increase the crop water footprint of consumption. This will increase the dependence of cities on external water footprint of crop products (water embodied in imported crops), which may impact upon food security in cities in the long term.

Suggested Citation

  • Zhao, X. & Tillotson, M.R. & Liu, Y.W. & Guo, W. & Yang, A.H. & Li, Y.F., 2017. "Index decomposition analysis of urban crop water footprint," Ecological Modelling, Elsevier, vol. 348(C), pages 25-32.
  • Handle: RePEc:eee:ecomod:v:348:y:2017:i:c:p:25-32
    DOI: 10.1016/j.ecolmodel.2017.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016305683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    3. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    4. Zezza, Alberto & Tasciotti, Luca, 2010. "Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries," Food Policy, Elsevier, vol. 35(4), pages 265-273, August.
    5. Barthel, Stephan & Isendahl, Christian, 2013. "Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities," Ecological Economics, Elsevier, vol. 86(C), pages 224-234.
    6. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    7. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    8. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihui Li & Haowei Wu & Xiangzheng Deng, 2022. "Spatial Pattern of Water Footprints for Crop Production in Northeast China," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    2. Zuxuan Song & Fangmei Liu & Wenbo Lv & Jianwu Yan, 2023. "Classification of Urban Agricultural Functional Regions and Their Carbon Effects at the County Level in the Pearl River Delta, China," Agriculture, MDPI, vol. 13(9), pages 1-29, September.
    3. Lei Liu & Tong Wu & Zhihang Xu & Xiaofeng Pan, 2018. "The Water-Economy Nexus and Sustainable Transition of the Pearl River Delta, China (1999–2015)," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    4. Yuanhong Tian & Matthias Ruth & Dajian Zhu & Jinfeng Ding & Nicholas Morris, 2019. "A Sustainability Assessment of Five Major Food Crops’ Water Footprints in China from 1978 to 2010," Sustainability, MDPI, vol. 11(21), pages 1-20, November.
    5. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    6. Magdalena Karwacka & Agnieszka Ciurzyńska & Andrzej Lenart & Monika Janowicz, 2020. "Sustainable Development in the Agri-Food Sector in Terms of the Carbon Footprint: A Review," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    7. Guojing Li & Xinru Han & Qiyou Luo & Wenbo Zhu & Jing Zhao, 2021. "A Study on the Relationship between Income Change and the Water Footprint of Food Consumption in Urban China," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    8. Meng, Fanxin & Liu, Gengyuan & Chang, Yuan & Su, Meirong & Hu, Yuanchao & Yang, Zhifeng, 2019. "Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China)," Energy, Elsevier, vol. 171(C), pages 403-418.
    9. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    2. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    3. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    4. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    5. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    6. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    7. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    8. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    9. Liu, Zhu & Geng, Yong & Lindner, Soeren & Guan, Dabo, 2012. "Uncovering China’s greenhouse gas emission from regional and sectoral perspectives," Energy, Elsevier, vol. 45(1), pages 1059-1068.
    10. Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    11. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    12. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    13. Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    14. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    15. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
    16. Zhaosu Meng & Huan Wang & Baona Wang, 2018. "Empirical Analysis of Carbon Emission Accounting and Influencing Factors of Energy Consumption in China," IJERPH, MDPI, vol. 15(11), pages 1-15, November.
    17. Zhe Wang & Lin Zhao & Guozhu Mao & Ben Wu, 2015. "Factor Decomposition Analysis of Energy-Related CO 2 Emissions in Tianjin, China," Sustainability, MDPI, vol. 7(8), pages 1-16, July.
    18. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    19. Ishak Norziha & Abdullah Rosazlin & Rosli Noor Sharina Mohd & Halim Nur Sa’adah Abdul & Majid Hazreenbdul & Ariffin Fazilah, 2022. "Challenges of Urban Garden Initiatives for Food Security in Kuala Lumpur, Malaysia," Quaestiones Geographicae, Sciendo, vol. 41(4), pages 57-72, December.
    20. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:348:y:2017:i:c:p:25-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.