IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i22p2699-2713.html
   My bibliography  Save this article

A linked model of animal ecology and human behavior for the management of wildlife tourism

Author

Listed:
  • Semeniuk, Christina A.D.
  • Haider, Wolfgang
  • Cooper, Andrew
  • Rothley, Kristina D.

Abstract

Wildlife tourism attractions are characterized as having intricately coupled human–wildlife interactions. Accordingly, the ability to mitigate negative impacts of tourism on wildlife necessitates research into the ecology of the system and of the human dimensions, since plans aimed at optimizing wildlife fitness must also be acceptable to tourists. We developed an integrated systems dynamics model for the management of tourist–stingray interactions at ‘Stingray City Sandbar’ (SCS), Cayman Islands. The model predicts the state of the tourism attraction over time in relation to stingray population size, stingray life expectancy, and tourist visitation under various management scenarios. Stingray population data in the model comprised growth rates and survival estimates (from mark-and-recapture data) and mortality estimates. Inputted changes in their respective rates under different management scenarios were informed by previous research. Original research on the demand of heterogeneous tourist segments for management regulations via a stated choice model was used to calculate changes in the tourist population growth rate from data supplied by the Caymanian government. The management attributes to which tourists were responsive also have anticipated effects on stingray ecology (migration and mortality), and vice versa, thus linking the two components. We found that the model's predictions over a 25-year time span were sensitive to the stingray population growth rate and alternate management options. Under certain management scenarios, it was possible to maximize both the tourist segment in favor of no management and stingray numbers while reducing stingray health. However, the most effective relative strategy included a reduction in visitor density, restricted stingray interactions, and an imposition of a small fee. Over time, although fewer stingrays were predicted to remain at SCS, they would live longer and experience fewer stochastic disease events, and the desirable tourist segment was predicted to predominate. By understanding how management will affect tourist activities and their subsequent impacts on both wildlife health and visitor satisfaction, one can explore the management alternatives that would optimize both.

Suggested Citation

  • Semeniuk, Christina A.D. & Haider, Wolfgang & Cooper, Andrew & Rothley, Kristina D., 2010. "A linked model of animal ecology and human behavior for the management of wildlife tourism," Ecological Modelling, Elsevier, vol. 221(22), pages 2699-2713.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:22:p:2699-2713
    DOI: 10.1016/j.ecolmodel.2010.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001000373X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Y.C. & Hong, F.W. & Lee, M.T., 2008. "A system dynamic based DSS for sustainable coral reef management in Kenting coastal zone, Taiwan," Ecological Modelling, Elsevier, vol. 211(1), pages 153-168.
    2. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D. With contributions by-Name:Adamowicz,Wiktor, 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304.
    3. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    4. Beall, Allyson & Zeoli, Len, 2008. "Participatory modeling of endangered wildlife systems: Simulating the sage-grouse and land use in Central Washington," Ecological Economics, Elsevier, vol. 68(1-2), pages 24-33, December.
    5. BenDor, Todd & Scheffran, Jürgen & Hannon, Bruce, 2009. "Ecological and economic sustainability in fishery management: A multi-agent model for understanding competition and cooperation," Ecological Economics, Elsevier, vol. 68(4), pages 1061-1073, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanmay Sharma & Joseph S. Chen & Wan-Yu Liu, 2019. "Investigating Environmental Transgressions at Corbett Tiger Reserve, India," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    2. Douglas J. Crookes & James N. Blignaut, 2015. "Debunking the myth that a legal trade will solve the rhino horn crisis: A system dynamics model for market demand," Working Papers 520, Economic Research Southern Africa.
    3. Weller, Florian & Cecchini, Lee-Anne & Shannon, Lynne & Sherley, Richard B. & Crawford, Robert J.M. & Altwegg, Res & Scott, Leanne & Stewart, Theodor & Jarre, Astrid, 2014. "A system dynamics approach to modelling multiple drivers of the African penguin population on Robben Island, South Africa," Ecological Modelling, Elsevier, vol. 277(C), pages 38-56.
    4. Cong, Li & Wu, Bihu & Morrison, Alastair M. & Shu, Hua & Wang, Mu, 2014. "Analysis of wildlife tourism experiences with endangered species: An exploratory study of encounters with giant pandas in Chengdu, China," Tourism Management, Elsevier, vol. 40(C), pages 300-310.
    5. Yun Eui Choi & Kihwan Song & Min Kim & Junga Lee, 2017. "Transformation Planning for Resilient Wildlife Habitats in Ecotourism Systems," Sustainability, MDPI, vol. 9(4), pages 1-28, March.
    6. Jia Shi & Xuesong Guo & Xiangnan Hu, 2019. "Engaging Stakeholders in Urban Traffic Restriction Policy Assessment Using System Dynamics: The Case Study of Xi’an City, China," Sustainability, MDPI, vol. 11(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hensher & John Rose & Zheng Li, 2012. "Does the choice model method and/or the data matter?," Transportation, Springer, vol. 39(2), pages 351-385, March.
    2. de Ayala, Amaia & Hoyos, David & Mariel, Petr, 2015. "Suitability of discrete choice experiments for landscape management under the European Landscape Convention," Journal of Forest Economics, Elsevier, vol. 21(2), pages 79-96.
    3. Sardaro, Ruggiero & La Sala, Piermichele & De Pascale, Gianluigi & Faccilongo, Nicola, 2021. "The conservation of cultural heritage in rural areas: Stakeholder preferences regarding historical rural buildings in Apulia, southern Italy," Land Use Policy, Elsevier, vol. 109(C).
    4. Gevrek, Z.Eylem & Uyduranoglu, Ayse, 2015. "Public preferences for carbon tax attributes," Ecological Economics, Elsevier, vol. 118(C), pages 186-197.
    5. Laura Enthoven & Goedele Van den Broeck, 2021. "Promoting Food Safety in Local Value Chains: The Case of Vegetables in Vietnam," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    6. Emmanouil Mentzakis & Mandy Ryan & Paul McNamee, 2011. "Using discrete choice experiments to value informal care tasks: exploring preference heterogeneity," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 930-944, August.
    7. Catalina M. Torres Figuerola & Nick Hanley & Sergio Colombo, 2011. "Incorrectly accounting for taste heterogeneity in choice experiments: Does it really matter for welfare measurement?," CRE Working Papers (Documents de treball del CRE) 2011/1, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    8. Goedele Van den Broeck & Kaat Van Hoyweghen & Miet Maertens, 2016. "Employment Conditions in the Senegalese Horticultural Export Industry: A Worker Perspective," Development Policy Review, Overseas Development Institute, vol. 34(2), pages 301-319, March.
    9. Arntz, Melanie & Brüll, Eduard & Lipowski, Cäcilia, 2021. "Do preferences for urban amenities really differ by skill?," ZEW Discussion Papers 21-045, ZEW - Leibniz Centre for European Economic Research.
    10. Terry N. Flynn & Elisabeth Huynh & Tim J. Peters & Hareth Al‐Janabi & Sam Clemens & Alison Moody & Joanna Coast, 2015. "Scoring the Icecap‐a Capability Instrument. Estimation of a UK General Population Tariff," Health Economics, John Wiley & Sons, Ltd., vol. 24(3), pages 258-269, March.
    11. Stefania Troiano & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Federico Nassivera, 2019. "Households’ Preferences for a New ‘Climate-Friendly’ Heating System: Does Contribution to Reducing Greenhouse Gases Matter?," Energies, MDPI, vol. 12(13), pages 1-19, July.
    12. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2016. "Farmers' willingness to contract switchgrass as a cellulosic bioenergy crop in Kansas," Energy Economics, Elsevier, vol. 55(C), pages 292-302.
    13. José Grisolía & Kenneth Willis, 2012. "A latent class model of theatre demand," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 36(2), pages 113-139, May.
    14. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    15. Schaak, Henning & Mußhoff, Oliver, 2019. "Public preferences for livestock presence in pasture landscape: A latent class analysis of a discrete choice experiment in Germany," DARE Discussion Papers 1901, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    16. Junui Shen & Kazuhito Ogawa & Hiromasa Takahashi, 2014. "Examining the Tradeoff Between Fixed Pay and Performance-Related Pay: A Choice Experiment Approach," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 6(2), pages 119-131, December.
    17. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    18. J Blasch & B van der Kroon & P van Beukering & R Munster & S Fabiani & P Nino & S Vanino, 2022. "Farmer preferences for adopting precision farming technologies: a case study from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 33-81.
    19. Chad M. Baum & Robert Weigelt, 2019. "How Where I Shop Influences What I Buy: The Importance of the Retail Format in Sustainable Tomato Consumption," Economic Complexity and Evolution, in: Andreas Chai & Chad M. Baum (ed.), Demand, Complexity, and Long-Run Economic Evolution, pages 141-169, Springer.
    20. Z. Eylem Gevrek & Ayse Uyduranoglu, 2015. "Public Preferences for Carbon Tax Attributes," Working Paper Series of the Department of Economics, University of Konstanz 2015-15, Department of Economics, University of Konstanz.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:22:p:2699-2713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.