IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v215y2022ics0165176522001161.html
   My bibliography  Save this article

A benchmark model for fixed-target Arctic sea ice forecasting

Author

Listed:
  • Diebold, Francis X.
  • Göbel, Maximilian

Abstract

We propose a reduced-form benchmark predictive model (BPM) for fixed-target forecasting of Arctic sea ice extent, and we provide a case study of its real-time performance for target date September 2020. We visually detail the evolution of the statistically-optimal point, interval, and density forecasts as time passes, new information arrives, and the end of September approaches. Comparison to the BPM may prove useful for evaluating and selecting among various more sophisticated dynamical sea ice models, which are widely used to quantify the likely future evolution of Arctic conditions and their two-way interaction with economic activity.

Suggested Citation

  • Diebold, Francis X. & Göbel, Maximilian, 2022. "A benchmark model for fixed-target Arctic sea ice forecasting," Economics Letters, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:ecolet:v:215:y:2022:i:c:s0165176522001161
    DOI: 10.1016/j.econlet.2022.110478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176522001161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2022.110478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    2. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    3. Ing, Ching-Kang, 2003. "Multistep Prediction In Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 19(2), pages 254-279, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023. "Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models," Energy Economics, Elsevier, vol. 124(C).
    2. Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," Working Papers 22-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    3. Francis X. Diebold & Maximilian Goebel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," Papers 2206.10721, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice:Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," PIER Working Paper Archive 22-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," Working Papers 22-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    3. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023. "Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models," Energy Economics, Elsevier, vol. 124(C).
    4. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    5. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    6. Jennifer Castle & David Hendry, 2020. "Identifying the Causal Role of CO2 during the Ice Ages," Economics Series Working Papers 898, University of Oxford, Department of Economics.
    7. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
    8. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2023. "When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 236(2).
    9. Matthias Burgert & Stephane Dees, 2009. "Forecasting World Trade: Direct Versus “Bottom-Up” Approaches," Open Economies Review, Springer, vol. 20(3), pages 385-402, July.
    10. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
    11. Rebecca Stuart, 2020. "Monetary regimes, the term structure and business cycles in Ireland, 1972–2018," Manchester School, University of Manchester, vol. 88(5), pages 731-748, September.
    12. Alfred A. Haug & Christie Smith, 2012. "Local Linear Impulse Responses for a Small Open Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(3), pages 470-492, June.
    13. Tommaso Proietti, 2016. "The Multistep Beveridge--Nelson Decomposition," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 373-395, March.
    14. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
    15. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    16. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    17. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
    18. Jari Hännikäinen, 2014. "Multi-step forecasting in the presence of breaks," Working Papers 1494, Tampere University, Faculty of Management and Business, Economics.
    19. Moiseev, Nikita & Volodin, Andrei, 2019. "Increasing the accuracy of macroeconomic time series forecast by incorporating functional and correlational dependencies between them," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 53, pages 119-137.
    20. Nicholas Apergis & Panagiotis G. Artikis, 2016. "Foreign Exchange Risk, Equity Risk Factors and Economic Growth," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 44(4), pages 425-445, December.

    More about this item

    Keywords

    Climate forecasting; Climate prediction; Climate change; Forecast evaluation;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:215:y:2022:i:c:s0165176522001161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.