IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v66y2008i1p51-65.html
   My bibliography  Save this article

Hydro-economic river basin modelling: The application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain

Author

Listed:
  • Pulido-Velazquez, Manuel
  • Andreu, Joaqui­n
  • Sahuquillo, Andrés
  • Pulido-Velazquez, David

Abstract

Combined hydro-economic models of river basins are fundamental tools for assessing management and infrastructure strategies to improve the economic efficiency of water use in a context of competition over scarce water resources. Integrated hydro-economic models have to be capable to properly reproduce the physical behavior of the system, with a realistic representation of the different surface and groundwater resources, including their interaction, and the spatial and temporal variability of resource availability. On the other hand, such models must incorporate the value of water for different urban, agricultural and industrial uses and users. Economic values for water use are defined according to the marginal residual value of water for production (for agricultural and industrial uses) or the aggregated willingness-to-pay (WTP) for urban supply and other final water uses. In this paper, we present a systematic approach to estimate the marginal economic value of surface and groundwater resources at different locations within a complex water resources system. Based on a holistic conjunctive optimization model applied to the Adra river system in Spain we asses the total and marginal opportunity costs of capacity and operation constraints, including the opportunity cost of imposing environmental constraints on water use as foreseen in future Spanish water policy following the implementation of the European Water Framework Directive. The resulting opportunity costs provide important information to water managers about economic inefficiencies of current water allocation policy or infrastructure design, and about the resource opportunity costs to be considered in the design of efficient pricing policies in regions with water scarcity issues.

Suggested Citation

  • Pulido-Velazquez, Manuel & Andreu, Joaqui­n & Sahuquillo, Andrés & Pulido-Velazquez, David, 2008. "Hydro-economic river basin modelling: The application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain," Ecological Economics, Elsevier, vol. 66(1), pages 51-65, May.
  • Handle: RePEc:eee:ecolec:v:66:y:2008:i:1:p:51-65
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(07)00617-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Brozović & David Sunding & David Zilberman, 2006. "Optimal Management of Groundwater over Space and Time," Natural Resource Management and Policy, in: Renan-Ulrich Goetz & Dolors Berga (ed.), Frontiers in Water Resource Economics, chapter 0, pages 109-135, Springer.
    2. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    3. Renan-Ulrich Goetz & Dolors Berga (ed.), 2006. "Frontiers in Water Resource Economics," Natural Resource Management and Policy, Springer, number 978-0-387-30056-6, December.
    4. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    5. James E. T. Moncur & Richard L. Pollock, 1988. "Scarcity Rents for Water: A Valuation and Pricing Model," Land Economics, University of Wisconsin Press, vol. 64(1), pages 62-72.
    6. Alberto Garrido, 2000. "A mathematical programming model applied to the study of water markets within the Spanish agricultural sector," Annals of Operations Research, Springer, vol. 94(1), pages 105-123, January.
    7. Booker J. F. & Young R. A., 1994. "Modeling Intrastate and Interstate Markets for Colorado River Water Resources," Journal of Environmental Economics and Management, Elsevier, vol. 26(1), pages 66-87, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sapino, Francesco & Pérez-Blanco, C. Dionisio & Gutiérrez-Martín, Carlos & García-Prats, Alberto & Pulido-Velazquez, Manuel, 2022. "Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Quintana Ashwell, Nicolas E. & Peterson, Jeffrey M. & Hendricks, Nathan P., 2018. "Optimal groundwater management under climate change and technical progress," Resource and Energy Economics, Elsevier, vol. 51(C), pages 67-83.
    3. Dirk Rübbelke & Stefan Vögele, 2010. "Impacts of Climate Change on European Critical Infrastructures: The Case of the Power Sector," Working Papers 2010-08, BC3.
    4. Hong Lv & Xinjian Guan & Yu Meng, 2021. "Study on economic value of urban land resources based on emergy and econometric theories," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 1019-1042, January.
    5. Brouwer, Roy & Hofkes, Marjan, 2008. "Integrated hydro-economic modelling: Approaches, key issues and future research directions," Ecological Economics, Elsevier, vol. 66(1), pages 16-22, May.
    6. Burrow, Andy & Newman, Alexandra, 2020. "Optimal design and operation of River Basin Storage," Omega, Elsevier, vol. 95(C).
    7. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    8. Corentin Girard & Jean-Daniel Rinaudo & Manuel Pulido-Velazquez, 2015. "Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4129-4155, September.
    9. Pande, Saket & van den Boom, Bart & Savenije, Hubert H.G. & Gosain, Ashvani K., 2011. "Water valuation at basin scale with application to western India," Ecological Economics, Elsevier, vol. 70(12), pages 2416-2428.
    10. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," AMSE Working Papers 2144, Aix-Marseille School of Economics, France.
    11. Lin, Chen, 2009. "Hybrid input-output analysis of wastewater treatment and environmental impacts: A case study for the Tokyo Metropolis," Ecological Economics, Elsevier, vol. 68(7), pages 2096-2105, May.
    12. Nicholas Kilimani, 2014. "Water Taxation and the Double Dividend Hypothesis," Working Papers 201451, University of Pretoria, Department of Economics.
    13. Carlo Fezzi & Michael Hutchins & Dan Rigby & Ian J. Bateman & Paulette Posen & David Hadley, 2010. "Integrated assessment of water framework directive nitrate reduction measures," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 123-134, March.
    14. Kragt, Marit Ellen, 2013. "Integrating biophysical and economic systems in a Bayesian Network Hydro-economic framework," Working Papers 153334, University of Western Australia, School of Agricultural and Resource Economics.
    15. Phoebe Koundouri & Ebun Akinsete & Nikolaos Englezos & Xanthi Kartala & Ioannis Souliotis & Josef Adler, 2017. "Economic instruments, behaviour and incentives in groundwater management," DEOS Working Papers 1711, Athens University of Economics and Business.
    16. Jose M. Gonzalez & Marcelo A. Olivares & Josué Medellín-Azuara & Rodrigo Moreno, 2020. "Multipurpose Reservoir Operation: a Multi-Scale Tradeoff Analysis between Hydropower Generation and Irrigated Agriculture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2837-2849, July.
    17. Corentin Girard & Jean-Daniel Rinaudo & Manuel Pulido-Velazquez & Yvan Caballero, 2015. "An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario," Post-Print hal-01183833, HAL.
    18. O'Donoghue, Cathal & Buckley, Cathal & Chyzheuskaya, Aksana & Grealis, Eoin & Green, Stuart & Howley, Peter & Hynes, Stephen & Upton, Vincent, 2015. "The Spatial Impact of Economic Change on RiverWater Quality 1991-2010," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212665, European Association of Agricultural Economists.
    19. Ovando, Paola & Brouwer, Roy, 2019. "A review of economic approaches modeling the complex interactions between forest management and watershed services," Forest Policy and Economics, Elsevier, vol. 100(C), pages 164-176.
    20. Garrido, Alberto & Novo, Paula & Rodriguez Casado, Roberto & Varela-Ortega, Consuelo, 2009. "Can virtual water 'trade' reduce water scarcity in semi-arid countries? The case of Spain," 2009 Conference, August 16-22, 2009, Beijing, China 51048, International Association of Agricultural Economists.
    21. Dehghanipour, Amir Hossein & Schoups, Gerrit & Zahabiyoun, Bagher & Babazadeh, Hossein, 2020. "Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    22. Julio Berbel & Julia Martin-Ortega & Pascual Mesa, 2011. "A Cost-Effectiveness Analysis of Water-Saving Measures for the Water Framework Directive: the Case of the Guadalquivir River Basin in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 623-640, January.
    23. Blanco-Gutierrez, Irene & Varela-Ortega, Consuelo & Purkey, David R., 2011. "Integrated Economic-Hydrologic Analysis Of Policy Responses To Promote Sustainable Water Use Under Changing Climatic Conditions," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114253, European Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Roumasset & Christopher Wada, 2012. "The Economics of Groundwater," Working Papers 201211, University of Hawaii at Manoa, Department of Economics.
    2. repec:hae:wpaper:2012-5 is not listed on IDEAS
    3. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    4. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    5. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    6. Bradley Franklin & Kurt Schwabe & Lucia Levers, 2021. "Perennial Crop Dynamics May Affect Long-Run Groundwater Levels," Land, MDPI, vol. 10(9), pages 1-18, September.
    7. Calatrava-Requena, Javier & Garrido, Alberto, 2003. "The Effects Of Spot Water Markets On The Economic Risk Derived From Variable Water Supply," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25885, International Association of Agricultural Economists.
    8. Calatrava-Leyva, Javier & Colmenero, Alberto Garrido, 2001. "Analisis del efecto de los mercados de agua sobre el beneficio de las explotaciones, la contaminacion por nitratos y el empleo eventual agrario," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 1(02), pages 1-21, December.
    9. Gaston Giordana & Marc Willinger, 2013. "Fixed instruments to cope with stock externalities: an experimental evaluation," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 13, pages 367-403, Edward Elgar Publishing.
    10. Qiuqiong Huang & Jinxia Wang & Scott Rozelle & Stephen Polasky & Yang Liu, 2013. "The Effects of Well Management and the Nature of the Aquifer on Groundwater Resources," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 94-116.
    11. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Tim Huh, 2009. "Simple Mechanisms for Managing Complex Aquifers," NCEE Working Paper Series 200905, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Oct 2009.
    12. Najafi Alamdarlo, Hamed & Pourmozafar, Hosein & Vakilpoor, Mohamad Hasan, 2019. "Improving demand technology and internalizing external effects in groundwater market framework, case study: Qazvin plain in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 164-173.
    13. Dionisios Latinopoulos & Eftichios Sartzetakis, 2013. "Using tradable water permits in irrigated agriculture," Discussion Paper Series 2013_04, Department of Economics, University of Macedonia, revised Dec 2013.
    14. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.
    15. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Britz, Wolfgang & Linda, Arata, "undated". "How Important Are Crop Shares In Managing Risk For Specialized Arable Farms? A Panel Estimation Of A Programming Model For Three European Regions," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244801, German Association of Agricultural Economists (GEWISOLA).
    17. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    18. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    19. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    20. Kaplan, Jonathan D. & Johansson, Robert C., 2003. "When The !%$? Hits The Land: Implications For Us Agriculture And Environment When Land Application Of Manure Is Constrained," 2003 Annual meeting, July 27-30, Montreal, Canada 22002, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    21. Acuña, Guillermo, 2017. "Elasticidades de la demanda de agua en Chile [Elasticities of water demand in Chile]," MPRA Paper 82916, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:66:y:2008:i:1:p:51-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.