IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v210y2023ics0921800923001222.html
   My bibliography  Save this article

Unpacking the urban virtual water of the Global South: Lessons from 181 cities

Author

Listed:
  • Hachaichi, Mohamed

Abstract

Most of the water humanity currently consumes is invisible, it is embedded within goods and services purchased by final consumers from the global economic market. Cities of the Global South (GS) – especially African and Asian cities are facing twofold water security problems. First, the increased risk of water availability (both quantity and quality), which is exacerbated by climate change. Second, the ever-increasing water demand due to their economic and population growth. Therefore, to help cities of the GS to efficiently manage their water resources, it is crucial to explore what products are being imported from the global economic market and assess their embodied water intensities. Herein, the water footprints (blue and grey) of 181 cities from the GS are computed using Extended Environmental Input-Output Analysis (EE-IOA). Results point out that water imports through virtual water are significant and growing even across the GS with different magnitudes because of the economic attributes of cities (expenditures patterns) and their geography (spatial location). The average blue virtual water is estimated to be 253 l per capita/yr and 285 l per capita/yr for virtual grey water. When decomposing the water footprint we found that the major responsible sectors are “Food” accounting for 37% of the total footprint, followed by “Transport” with 24%, and “Energy” with 22%. To put the climate impacts in perspective, cities of the GS must act in a proactive approach and use the water-trade nexus as a supplementary approach to shape and implement water security strategies.

Suggested Citation

  • Hachaichi, Mohamed, 2023. "Unpacking the urban virtual water of the Global South: Lessons from 181 cities," Ecological Economics, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:ecolec:v:210:y:2023:i:c:s0921800923001222
    DOI: 10.1016/j.ecolecon.2023.107859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923001222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.107859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thijs ten Raa, 2009. "The Extraction of Technical Coefficients from Input and Output Data," World Scientific Book Chapters, in: Input–Output Economics: Theory And Applications Featuring Asian Economies, chapter 8, pages 111-120, World Scientific Publishing Co. Pte. Ltd..
    2. Mohamed Hachaichi & Jafaru Egieya, 2023. "Water-Food-Energy Nexus in Global Cities: Addressing Complex Urban Interdependencies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1811-1825, March.
    3. Reimer, Jeffrey J., 2012. "On the economics of virtual water trade," Ecological Economics, Elsevier, vol. 75(C), pages 135-139.
    4. Asma Souissi & Nadhem Mtimet & Laura McCann & Ali Chebil & Chokri Thabet, 2022. "Determinants of Food Consumption Water Footprint in the MENA Region: The Case of Tunisia," Sustainability, MDPI, vol. 14(3), pages 1-14, January.
    5. Neal T. Graham & Mohamad I. Hejazi & Son H. Kim & Evan G. R. Davies & James A. Edmonds & Fernando Miralles-Wilhelm, 2020. "Future changes in the trading of virtual water," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Justin Kitzes, 2013. "An Introduction to Environmentally-Extended Input-Output Analysis," Resources, MDPI, vol. 2(4), pages 1-15, September.
    7. ten Raa,Thijs, 2006. "The Economics of Input-Output Analysis," Cambridge Books, Cambridge University Press, number 9780521841795, January.
    8. Ana Serrano & Dabo Guan & Rosa Duarte & Jouni Paavola, 2016. "Virtual Water Flows in the EU27: A Consumption-based Approach," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 547-558, June.
    9. Thomas Wiedmann & Manfred Lenzen & Lorenz T. Keyßer & Julia K. Steinberger, 2020. "Scientists’ warning on affluence," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    10. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    11. Yves Tramblay & Lionel Jarlan & Lahoucine Hanich & Samuel Somot, 2018. "Future Scenarios of Surface Water Resources Availability in North African Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1291-1306, March.
    12. Bae, Jinwon & Dall'erba, Sandy, 2018. "Crop Production, Export of Virtual Water and Water-saving Strategies in Arizona," Ecological Economics, Elsevier, vol. 146(C), pages 148-156.
    13. Amy Maxmen, 2018. "As Cape Town water crisis deepens, scientists prepare for ‘Day Zero’," Nature, Nature, vol. 554(7690), pages 13-14, February.
    14. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Lu, Shibao & Bai, Xiao & Zhang, Jin & Li, Jinkai & Li, Wei & Lin, Ji, 2022. "Impact of virtual water export on water resource security associated with the energy and food bases in Northeast China," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    16. Qiang Ren & Chunyang He & Qingxu Huang & Peijun Shi & Da Zhang & Burak Güneralp, 2022. "Impacts of urban expansion on natural habitats in global drylands," Nature Sustainability, Nature, vol. 5(10), pages 869-878, October.
    17. Noah Diffenbaugh & Filippo Giorgi, 2012. "Climate change hotspots in the CMIP5 global climate model ensemble," Climatic Change, Springer, vol. 114(3), pages 813-822, October.
    18. Helmut Haberl & Dominik Wiedenhofer & Stefan Pauliuk & Fridolin Krausmann & Daniel B. Müller & Marina Fischer-Kowalski, 2019. "Contributions of sociometabolic research to sustainability science," Nature Sustainability, Nature, vol. 2(3), pages 173-184, March.
    19. Christopher Kennedy & Daniel Hoornweg, 2012. "Mainstreaming Urban Metabolism," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 780-782, December.
    20. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    21. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    22. Min Gon Chung & Kenneth A. Frank & Yadu Pokhrel & Thomas Dietz & Jianguo Liu, 2021. "Natural infrastructure in sustaining global urban freshwater ecosystem services," Nature Sustainability, Nature, vol. 4(12), pages 1068-1075, December.
    23. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    24. Chini, Christopher M. & Stillwell, Ashlynn S., 2020. "The changing virtual water trade network of the European electric grid," Applied Energy, Elsevier, vol. 260(C).
    25. Thomas O. Wiedmann & Guangwu Chen & John Barrett, 2016. "The Concept of City Carbon Maps: A Case Study of Melbourne, Australia," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 676-691, August.
    26. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    27. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    28. Miina Porkka & Matti Kummu & Stefan Siebert & Olli Varis, 2013. "From Food Insufficiency towards Trade Dependency: A Historical Analysis of Global Food Availability," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingwei Han & Zhixiong Tan & Maozhi Chen & Liang Zhao & Ling Yang & Siying Chen, 2022. "Carbon Footprint Research Based on Input–Output Model—A Global Scientometric Visualization Analysis," IJERPH, MDPI, vol. 19(18), pages 1-23, September.
    2. Willa Paterson & Richard Rushforth & Benjamin L. Ruddell & Megan Konar & Ikechukwu C. Ahams & Jorge Gironás & Ana Mijic & Alfonso Mejia, 2015. "Water Footprint of Cities: A Review and Suggestions for Future Research," Sustainability, MDPI, vol. 7(7), pages 1-30, June.
    3. A. Hassan & M. Y. Saari & T. H. Tengku Ismail, 2017. "Virtual water trade in industrial products: evidence from Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 877-894, June.
    4. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    5. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    6. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    7. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    8. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    9. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    10. Popescu, Ioana-Stefania & Gibon, Thomas & Hitaj, Claudia & Rubin, Mirco & Benetto, Enrico, 2023. "Are SRI funds financing carbon emissions? An input-output life cycle assessment of investment funds," Ecological Economics, Elsevier, vol. 212(C).
    11. Dr. Markus Flaute & Dr. Christian Lutz & Martin Distelkamp, 2017. "Der Einsatz von MRIO zur Berechnung der Fußabdrücke von Nationen – eine Anwendung der EXIOBASE-Datenbank," GWS Discussion Paper Series 17-7, GWS - Institute of Economic Structures Research.
    12. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    13. Shepard, Jun U. & Pratson, Lincoln F., 2020. "Hybrid input-output analysis of embodied energy security," Applied Energy, Elsevier, vol. 279(C).
    14. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    15. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    16. Sylvain Weber & Reyer Gerlagh & Nicole A. Mathys & Daniel Moran, 2017. "CO2 embedded in trade: trends and fossil fuel drivers," Development Working Papers 413, Centro Studi Luca d'Agliano, University of Milano.
    17. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    18. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.
    19. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    20. Fabio Monsalve & Mateo Ortiz & María-Ángeles Cadarso & Enrique Gilles & Jorge Zafrilla & Luis-Antonio López, 2020. "Nesting a city input–output table in a multiregional framework: a case example with the city of Bogota," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:210:y:2023:i:c:s0921800923001222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.