IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i3p813-822.html
   My bibliography  Save this article

Climate change hotspots in the CMIP5 global climate model ensemble

Author

Listed:
  • Noah Diffenbaugh
  • Filippo Giorgi

Abstract

We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2 °C of global warming (relative to the late-20th-century baseline), but not at the higher levels of global warming that occur in the late-21st-century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world. Copyright The Author(s) 2012

Suggested Citation

  • Noah Diffenbaugh & Filippo Giorgi, 2012. "Climate change hotspots in the CMIP5 global climate model ensemble," Climatic Change, Springer, vol. 114(3), pages 813-822, October.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:3:p:813-822
    DOI: 10.1007/s10584-012-0570-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0570-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0570-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    2. Noah S. Diffenbaugh & Thomas W. Hertel & Martin Scherer & Monika Verma, 2012. "Response of corn markets to climate volatility under alternative energy futures," Nature Climate Change, Nature, vol. 2(7), pages 514-518, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karla Hernández & Carlos Madeira, 2021. "The impact of climate change on economic output in Chile: past and future," Working Papers Central Bank of Chile 933, Central Bank of Chile.
    2. Hans Hooyberghs & Stijn Verbeke & Dirk Lauwaet & Helia Costa & Graham Floater & Koen Ridder, 2017. "Influence of climate change on summer cooling costs and heat stress in urban office buildings," Climatic Change, Springer, vol. 144(4), pages 721-735, October.
    3. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Luis L. Paniagua & Abelardo García-Martín & Francisco J. Rebollo, 2023. "Future Scenarios for Aridity under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Land, MDPI, vol. 12(3), pages 1-13, February.
    4. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    5. H. Huebener & M. Sanderson & I. Höschel & J. Körper & T. Johns & J.-F. Royer & E. Roeckner & E. Manzini & J.-L. Dufresne & O. Otterå & J. Tjiputra & D. Salas y Melia & M. Giorgetta & S. Denvil & P. Fo, 2013. "Regional hydrological cycle changes in response to an ambitious mitigation scenario," Climatic Change, Springer, vol. 120(1), pages 389-403, September.
    6. Yenan Wu & Di Long & Upmanu Lall & Bridget R. Scanlon & Fuqiang Tian & Xudong Fu & Jianshi Zhao & Jianyun Zhang & Hao Wang & Chunhong Hu, 2022. "Reconstructed eight-century streamflow in the Tibetan Plateau reveals contrasting regional variability and strong nonstationarity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Kayenat Kabir & Uris Lantz C. Baldos & Thomas W. Hertel, 2023. "The new Malthusian challenge in the Sahel: prospects for improving food security in Niger," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(2), pages 455-476, April.
    8. Nada Ben Mhenni & Masato Shinoda & Banzragch Nandintsetseg, 2021. "Assessment of drought frequency, severity, and duration and its impacts on vegetation greenness and agriculture production in Mediterranean dryland: A case study in Tunisia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2755-2776, February.
    9. Nigel Arnell & Ben Lloyd-Hughes, 2014. "The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios," Climatic Change, Springer, vol. 122(1), pages 127-140, January.
    10. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    11. Carlos Madeira, 2022. "A review of the future impact of climate change in Chile: economic output and other outcomes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    12. Hachaichi, Mohamed, 2023. "Unpacking the urban virtual water of the Global South: Lessons from 181 cities," Ecological Economics, Elsevier, vol. 210(C).
    13. Jian-Sheng Ye & James Reynolds & Guo-Jun Sun & Feng-Min Li, 2013. "Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: a modeling analysis," Climatic Change, Springer, vol. 119(2), pages 321-332, July.
    14. Giulio Fusco, 2022. "Climate Change and Food Security in the Northern and Eastern African Regions: A Panel Data Analysis," Sustainability, MDPI, vol. 14(19), pages 1-10, October.
    15. Cristina Andrade & André Fonseca & João Andrade Santos, 2021. "Are Land Use Options in Viticulture and Oliviculture in Agreement with Bioclimatic Shifts in Portugal?," Land, MDPI, vol. 10(8), pages 1-16, August.
    16. Stefanos Stefanidis & Vasileios Alexandridis & Kaushik Ghosal, 2022. "Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    17. D. Carvalho & S. C. Pereira & R. Silva & A. Rocha, 2022. "Aridity and desertification in the Mediterranean under EURO-CORDEX future climate change scenarios," Climatic Change, Springer, vol. 174(3), pages 1-24, October.
    18. Linyin Cheng & Amir AghaKouchak & Eric Gilleland & Richard Katz, 2014. "Non-stationary extreme value analysis in a changing climate," Climatic Change, Springer, vol. 127(2), pages 353-369, November.
    19. Gabriele Lobaccaro & Juan Angel Acero & Gerardo Sanchez Martinez & Ales Padro & Txomin Laburu & German Fernandez, 2019. "Effects of Orientations, Aspect Ratios, Pavement Materials and Vegetation Elements on Thermal Stress inside Typical Urban Canyons," IJERPH, MDPI, vol. 16(19), pages 1-29, September.
    20. Pedro M. M. Soares & João A. M. Careto & Ana Russo & Daniela C. A. Lima, 2023. "The future of Iberian droughts: a deeper analysis based on multi-scenario and a multi-model ensemble approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 2001-2028, June.
    21. Rachel Warren & Oliver Andrews & Sally Brown & Felipe J. Colón-González & Nicole Forstenhäusler & David E. H. J. Gernaat & P. Goodwin & Ian Harris & Yi He & Chris Hope & Desmond Manful & Timothy J. Os, 2022. "Quantifying risks avoided by limiting global warming to 1.5 or 2 °C above pre-industrial levels," Climatic Change, Springer, vol. 172(3), pages 1-16, June.
    22. Bacon, Christopher M. & Sundstrom, William A. & Stewart, Iris T. & Beezer, David, 2017. "Vulnerability to Cumulative Hazards: Coping with the Coffee Leaf Rust Outbreak, Drought, and Food Insecurity in Nicaragua," World Development, Elsevier, vol. 93(C), pages 136-152.
    23. Fortes, Patrícia & Simoes, Sofia G. & Amorim, Filipa & Siggini, Gildas & Sessa, Valentina & Saint-Drenan, Yves-Marie & Carvalho, Sílvia & Mujtaba, Babar & Diogo, Paulo & Assoumou, Edi, 2022. "How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo Mesa-Arango & Badri Narayanan & Satish V. Ukkusuri, 2019. "The Impact of International Crises on Maritime Transportation Based Global Value Chains," Networks and Spatial Economics, Springer, vol. 19(2), pages 381-408, June.
    2. Erik Nelson & Virginia Matzek, 2016. "Carbon Credits Compete Poorly With Agricultural Commodities In An Optimized Model Of Land Use In Northern California," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-24, November.
    3. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    5. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    6. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    7. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    8. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    9. Soheil Shayegh & Johannes Emmerling & Massimo Tavoni, 2022. "International Migration Projections across Skill Levels in the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    10. Walsh, Michael J. & Gerber Van Doren, Léda & Shete, Nilam & Prakash, Akshay & Salim, Usama, 2018. "Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions," Applied Energy, Elsevier, vol. 210(C), pages 591-603.
    11. Hao, Na & Colson, Gregory & Seong, Byeongchan & Park, Cheolwoo & Wetzstein, Michael, 2015. "Drought, ethanol, and livestock," Energy Economics, Elsevier, vol. 49(C), pages 301-307.
    12. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    13. Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
    14. Bell, Kendon & Zilberman, David, 2016. "The potential for renewable fuels under greenhouse gas pricing: The case of sugarcane in Brazil," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt03h2850w, Department of Agricultural & Resource Economics, UC Berkeley.
    15. Kaj M. Hansen & Jesper H. Christensen & Jørgen Brandt, 2015. "The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study," IJERPH, MDPI, vol. 12(9), pages 1-15, September.
    16. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    17. Tao Li & Olivyn Angeles & Ando Radanielson & Manuel Marcaida & Emmali Manalo, 2015. "Drought stress impacts of climate change on rainfed rice in South Asia," Climatic Change, Springer, vol. 133(4), pages 709-720, December.
    18. Soma Sarkar & Vinay Gangare & Poonam Singh & Ramesh C. Dhiman, 2019. "Shift in Potential Malaria Transmission Areas in India, Using the Fuzzy-Based Climate Suitability Malaria Transmission (FCSMT) Model under Changing Climatic Conditions," IJERPH, MDPI, vol. 16(18), pages 1-16, September.
    19. Evangelos Grigoroudis & Vassilis S. Kouikoglou & Yannis A. Phillis & Fotis D. Kanellos, 2021. "Energy sustainability: a definition and assessment model," Operational Research, Springer, vol. 21(3), pages 1845-1885, September.
    20. Electra V. Petracou & Anastasios Xepapadeas & Athanasios N. Yannacopoulos, 2022. "Decision Making Under Model Uncertainty: Fréchet–Wasserstein Mean Preferences," Management Science, INFORMS, vol. 68(2), pages 1195-1211, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:3:p:813-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.