IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v4y2021i12d10.1038_s41893-021-00786-4.html
   My bibliography  Save this article

Natural infrastructure in sustaining global urban freshwater ecosystem services

Author

Listed:
  • Min Gon Chung

    (Michigan State University
    University of California)

  • Kenneth A. Frank

    (Michigan State University
    Michigan State University)

  • Yadu Pokhrel

    (Michigan State University)

  • Thomas Dietz

    (Michigan State University
    Michigan State University)

  • Jianguo Liu

    (Michigan State University)

Abstract

Rapid urbanization throughout the globe increases demand for fresh water and the ecosystem services associated with it. This need is conventionally met through the construction of infrastructure. Natural infrastructure solutions have increased to provide freshwater ecosystem services, but little global research has examined the intricate relationships between built and natural infrastructure for providing freshwater ecosystem services to cities across the globe. Using network analysis, here we examine the interrelationships between built and natural infrastructure in 2,113 watersheds for 317 cities worldwide, focusing on four key freshwater ecosystem services: freshwater provision, sediment regulation, flood mitigation and hydropower production. Our results indicate that protected wetlands contribute to sustaining freshwater provision to cities. Forest cover in protected areas can improve the capacity of large dams in reducing sediment loads and producing hydropower, but cities mainly depend on reduced impervious surfaces and more green spaces within urban areas for flood mitigation. Improved understandings of the role of natural infrastructure in urban water networks must underpin strategic decision-making to sustainably provide freshwater ecosystem services to global cities.

Suggested Citation

  • Min Gon Chung & Kenneth A. Frank & Yadu Pokhrel & Thomas Dietz & Jianguo Liu, 2021. "Natural infrastructure in sustaining global urban freshwater ecosystem services," Nature Sustainability, Nature, vol. 4(12), pages 1068-1075, December.
  • Handle: RePEc:nat:natsus:v:4:y:2021:i:12:d:10.1038_s41893-021-00786-4
    DOI: 10.1038/s41893-021-00786-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-021-00786-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-021-00786-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Shuying & Peng, Jian & Xia, Pei & Wang, Qi & Grabowski, Robert C & Azhoni, Adani & Bala, Brij & Shankar, Vijay & Meersmans, Jeroen, 2023. "Network analysis of water-related ecosystem services in search of solutions for sustainable catchment management: A case study in Sutlej-Beas River systems, India," Ecosystem Services, Elsevier, vol. 63(C).
    2. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    3. Hachaichi, Mohamed, 2023. "Unpacking the urban virtual water of the Global South: Lessons from 181 cities," Ecological Economics, Elsevier, vol. 210(C).
    4. Ziwei Yu & Xuming Jin & Yang Guo & Qian Liu & Wenyu Xiang & Shuai Zhou & Jiaying Wang & Dailin Yang & Hao Bin Wu & Juan Wang, 2024. "Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:4:y:2021:i:12:d:10.1038_s41893-021-00786-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.