IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v76y2022icp59-72.html
   My bibliography  Save this article

Integrated environment-smart agricultural practices: A strategy towards climate-resilient agriculture

Author

Listed:
  • Islam, Zeenatul
  • Sabiha, Noor E
  • Salim, Ruhul

Abstract

This article proposes an integrated farming approach, namely environment-smart agriculture (ESA) that determines the climate-resilience potential of a farm. A composite index is formulated including various environment-smart agricultural practices (IEP) that focus on the five most affected target areas of farm environment and climate. The IEP is then validated by analysing the on-farm environmental impact and farmers’ behaviours in the underlying theory of planned behaviour (TPB) framework. The TPB components, attitude and subjective norm are defined by the index of benefits from the ESA, and the index of experienced climate change conditions respectively, while perceived control corresponds to the index of constraints in adopting ESA and farm-specific agro-economic and socio-economic attributes. The empirical testing employed a structural equations model (SEM) to estimate the proposed IEP on a sample of 103 farms in two north-western districts of Bangladesh. Results demonstrate that the adoption of integrated ESA practices mitigates post-harvest environmental problems and helps cope with existing climate change conditions. Therefore, farm-level investment in ESA practices, i.e., the use of corrective, preventive, and local standard measures in an integrated way will contribute to the climate-resilience potential of a farm.

Suggested Citation

  • Islam, Zeenatul & Sabiha, Noor E & Salim, Ruhul, 2022. "Integrated environment-smart agricultural practices: A strategy towards climate-resilient agriculture," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 59-72.
  • Handle: RePEc:eee:ecanpo:v:76:y:2022:i:c:p:59-72
    DOI: 10.1016/j.eap.2022.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592622001151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2022.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulewski, Piotr & Kłoczko-Gajewska, Anna, 2018. "Development of the sustainability index of farms based on surveys and FADN sample," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 276476, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    2. Koirala, Pankaj & Kotani, Koji & Managi, Shunsuke, 2022. "How do farm size and perceptions matter for farmers’ adaptation responses to climate change in a developing country? Evidence from Nepal," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 188-204.
    3. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    4. Hammond, James & Fraval, Simon & van Etten, Jacob & Suchini, Jose Gabriel & Mercado, Leida & Pagella, Tim & Frelat, Romain & Lannerstad, Mats & Douxchamps, Sabine & Teufel, Nils & Valbuena, Diego & va, 2017. "The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central ," Agricultural Systems, Elsevier, vol. 151(C), pages 225-233.
    5. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    6. Ruhul Salim & Amzad Hossain, 2006. "Market deregulation, trade liberalization and productive efficiency in Bangladesh agriculture: an empirical analysis," Applied Economics, Taylor & Francis Journals, vol. 38(21), pages 2567-2580.
    7. Daxini, Amar & Ryan, Mary & O’Donoghue, Cathal & Barnes, Andrew P., 2019. "Understanding farmers’ intentions to follow a nutrient management plan using the theory of planned behaviour," Land Use Policy, Elsevier, vol. 85(C), pages 428-437.
    8. Khatri-Chhetri, Arun & Pant, Anjali & Aggarwal, Pramod K. & Vasireddy, Vijya Vardhan & Yadav, Akhilesh, 2019. "Stakeholders prioritization of climate-smart agriculture interventions: Evaluation of a framework," Agricultural Systems, Elsevier, vol. 174(C), pages 23-31.
    9. Alauddin, Mohammad & Tisdell, Clement & Sarker, Md. Abdur Rashid, 2021. "Do trends in Bangladeshi rice yields support Conway’s hypotheses about the consequences of modern agroecosystems?," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 342-354.
    10. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).
    11. Khatri-Chhetri, Arun & Aggarwal, P.K. & Joshi, P.K. & Vyas, S., 2017. "Farmers' prioritization of climate-smart agriculture (CSA) technologies," Agricultural Systems, Elsevier, vol. 151(C), pages 184-191.
    12. Miguel A. Altieri & Clara I. Nicholls, 2017. "The adaptation and mitigation potential of traditional agriculture in a changing climate," Climatic Change, Springer, vol. 140(1), pages 33-45, January.
    13. Apata, Temidayo Gabriel & Samuel, K.D. & Adeola, A.O., 2009. "Analysis of Climate Change Perception and Adaptation among Arable Food Crop Farmers in South Western Nigeria," 2009 Conference, August 16-22, 2009, Beijing, China 51365, International Association of Agricultural Economists.
    14. Lin, Boqiang & Wang, Xia, 2021. "Does low-carbon travel intention really lead to actual low-carbon travel? Evidence from urban residents in China," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 743-756.
    15. Noor-E-Sabiha & Sanzidur Rahman, 2018. "Environment-Smart Agriculture and Mapping of Interactions among Environmental Factors at the Farm Level: A Directed Graph Approach," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    16. Sain, Gustavo & Loboguerrero, Ana María & Corner-Dolloff, Caitlin & Lizarazo, Miguel & Nowak, Andreea & Martínez-Barón, Deissy & Andrieu, Nadine, 2017. "Costs and benefits of climate-smart agriculture: The case of the Dry Corridor in Guatemala," Agricultural Systems, Elsevier, vol. 151(C), pages 163-173.
    17. Toledo-Gallegos, Valeria M. & My, Nguyen H.D. & Tuan, Tran Huu & Börger, Tobias, 2022. "Valuing ecosystem services and disservices of blue/green infrastructure. Evidence from a choice experiment in Vietnam," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 114-128.
    18. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    19. Alauddin, Mohammad & Sarker, Md Abdur Rashid, 2014. "Climate change and farm-level adaptation decisions and strategies in drought-prone and groundwater-depleted areas of Bangladesh: an empirical investigation," Ecological Economics, Elsevier, vol. 106(C), pages 204-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandio, Abbas Ali & Ozdemir, Dicle & Jiang, Yuansheng, 2023. "Modelling the impact of climate change and advanced agricultural technologies on grain output: Recent evidence from China," Ecological Modelling, Elsevier, vol. 485(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helena Shilomboleni, 2020. "Political economy challenges for climate smart agriculture in Africa," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(4), pages 1195-1206, December.
    2. Mutenje, Munyaradzi Junia & Farnworth, Cathy Rozel & Stirling, Clare & Thierfelder, Christian & Mupangwa, Walter & Nyagumbo, Isaiah, 2019. "A cost-benefit analysis of climate-smart agriculture options in Southern Africa: Balancing gender and technology," Ecological Economics, Elsevier, vol. 163(C), pages 126-137.
    3. Mohammad Alauddin & Clement A Tisdell & Md Abdur Rashid Sarker, 2021. "Seven Decades of Changing Seasonal Land Use for Rice Production in Bangladesh, 1947-2019: Trends, Patterns and Implications," Economics, Ecology and Environment Working Papers 316555, University of Queensland, School of Economics.
    4. Andrieu, N. & Sogoba, B. & Zougmore, R. & Howland, F. & Samake, O. & Bonilla-Findji, O. & Lizarazo, M. & Nowak, A. & Dembele, C. & Corner-Dolloff, C., 2017. "Prioritizing investments for climate-smart agriculture: Lessons learned from Mali," Agricultural Systems, Elsevier, vol. 154(C), pages 13-24.
    5. Alauddin, Mohammad & Tisdell, Clement & Sarker, Md. Abdur Rashid, 2021. "Do trends in Bangladeshi rice yields support Conway’s hypotheses about the consequences of modern agroecosystems?," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 342-354.
    6. Thornton, Philip K. & Whitbread, Anthony & Baedeker, Tobias & Cairns, Jill & Claessens, Lieven & Baethgen, Walter & Bunn, Christian & Friedmann, Michael & Giller, Ken E. & Herrero, Mario & Howden, Mar, 2018. "A framework for priority-setting in climate smart agriculture research," Agricultural Systems, Elsevier, vol. 167(C), pages 161-175.
    7. Madhusudan Ghosh, 2019. "Climate-smart Agriculture, Productivity and Food Security in India," Journal of Development Policy and Practice, , vol. 4(2), pages 166-187, July.
    8. Collins C. Okolie & Gideon Danso-Abbeam & Okechukwu Groupson-Paul & Abiodun A. Ogundeji, 2022. "Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis," Land, MDPI, vol. 12(1), pages 1-23, December.
    9. Paul, B.K. & Frelat, R. & Birnholz, C. & Ebong, C. & Gahigi, A. & Groot, J.C.J. & Herrero, M. & Kagabo, D.M. & Notenbaert, A. & Vanlauwe, B. & van Wijk, M.T., 2018. "Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs," Agricultural Systems, Elsevier, vol. 163(C), pages 16-26.
    10. Ojo, T.O. & Baiyegunhi, L.J.S., 2020. "Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria," Land Use Policy, Elsevier, vol. 95(C).
    11. Talukder, Dayal & Chile, Love, 2014. "Characteristics of Rice Cultivation and Rural Rice Market in Bangladesh: Evidence from a Survey," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(2), pages 1-17.
    12. Das, Usha & Ansari, M.A. & Ghosh, Souvik, 2022. "Effectiveness and upscaling potential of climate smart agriculture interventions: Farmers' participatory prioritization and livelihood indicators as its determinants," Agricultural Systems, Elsevier, vol. 203(C).
    13. Esfandiari, Mehdi & Mirzaei Khalilabad, Hamid R. & Boshrabadi, Hossien Mehrabi & Mehrjerdi, Mohmmad R. Zare, 2020. "Factors influencing the use of adaptation strategies to climate change in paddy lands of Kamfiruz, Iran," Land Use Policy, Elsevier, vol. 95(C).
    14. Khan, Nasir Abbas & Qiao, Jiamei & Abid, Muhammad & Gao, Qijie, 2021. "Understanding farm-level cognition of and autonomous adaptation to climate variability and associated factors: Evidence from the rice-growing zone of Pakistan," Land Use Policy, Elsevier, vol. 105(C).
    15. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    16. Osuafor, Ogonna Olive & Ude, Kingsley David, 2021. "Valuation of Rice Farmers’ Preferences and Willingness to Pay for Climate-Smart Agricultural Technologies in Southeast, Nigeria," Asian Journal of Economic Modelling, Asian Economic and Social Society, vol. 9(1), pages 48-57, March.
    17. Giulio Fusco & Marta Melgiovanni & Donatella Porrini & Traci Michelle Ricciardo, 2020. "How to Improve the Diffusion of Climate-Smart Agriculture: What the Literature Tells us," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    18. Maleki, Tahereh & Koohestani, Hossein & Keshavarz, Marzieh, 2022. "Can climate-smart agriculture mitigate the Urmia Lake tragedy in its eastern basin?," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Cristian Rogério Foguesatto & João Armando Dessimon Machado, 2021. "What shapes farmers’ perception of climate change? A case study of southern Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1525-1538, February.
    20. Noor-E-Sabiha & Sanzidur Rahman, 2018. "Environment-Smart Agriculture and Mapping of Interactions among Environmental Factors at the Farm Level: A Directed Graph Approach," Sustainability, MDPI, vol. 10(5), pages 1-17, May.

    More about this item

    Keywords

    Agriculture; Environment-smart; Climate-resilient;
    All these keywords.

    JEL classification:

    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:76:y:2022:i:c:p:59-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.