IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v163y2018icp16-26.html
   My bibliography  Save this article

Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs

Author

Listed:
  • Paul, B.K.
  • Frelat, R.
  • Birnholz, C.
  • Ebong, C.
  • Gahigi, A.
  • Groot, J.C.J.
  • Herrero, M.
  • Kagabo, D.M.
  • Notenbaert, A.
  • Vanlauwe, B.
  • van Wijk, M.T.

Abstract

Rwanda's agricultural sector is facing severe challenges of increasing environmental degradation, resulting in declining productivity. The problem is likely to be further aggravated by the growing population pressure. A viable pathway is climate smart agriculture, aiming at the triple win of improving food security and climate change adaptation, while contributing to mitigation if possible. The Government of Rwanda has initiated ambitious policies and programs aiming at low emission agricultural development. Crop focused policies include the Crop Intensification Program (CIP) which facilitates access to inorganic fertilizer and improved seeds. In the livestock subsector, zero-grazing and improved livestock feeding are encouraged, and the Girinka program provides poor farm households with a crossbred dairy cow. In this study, we aimed at assessing the potential impact of these policy programs on food availability and greenhouse gas (GHG) emissions of 884 households across different agro-ecologies and farming systems in Rwanda. Household level calculations were used to assess the contribution of current crops, livestock and off-farm activities to food availability and GHG emissions. Across all sites, 46% of households were below the 2500kcalMAE−1yr−1 line, with lower food availability in the Southern and Eastern Rwanda. Consumed and sold food crops were the mainstay of food availability, contributing between 81.2% (low FA class) to 53.1% (high FA class). Livestock and off-farm income were the most important pathways to higher FA. Baseline GHG emissions were low, ranging between 395 and 1506kg CO2e hh−1yr−1 per site, and livestock related emissions from enteric fermentation (47.6–48.9%) and manure (26.7–31.8%) were the largest contributors to total GHG emissions across sites and FA classes. GHG emissions increased with FA, with 50% of the total GHG being emitted by 22% of the households with the highest FA scores. Scenario assessment of the three policy options showed strong differences in potential impacts: Girinka only reached one third of the household population, but acted highly pro-poor by decreasing the households below the 2500kcalMAE−1yr−1 line from 46% to 35%. However, Girinka also increased GHG by 1174kg CO2e hh−1yr−1, and can therefore not be considered climate-smart. Improved livestock feeding was the least equitable strategy, decreasing food insufficient households by only 3%. However, it increased median FA by 755kcalMAE−1yr−1 at a small GHG increase (50kg CO2e hh−1yr−1). Therefore, it is a promising option to reach the CSA triple win. Crop and soil improvement resulted in the smallest increase in median FA (FA by 322kcalMAE−1yr−1), and decreasing the proportion of households below 2500kcalMAE−1yr−1 by 6%. This came only at minimal increase in GHG emissions (23kg CO2e hh−1yr−1). All policy programs had different potential impacts and trade-offs on different sections of the farm household population. Quick calculations like the ones presented in this study can assist in policy dialogue and stakeholder engagement to better select and prioritize policies and development programs, despite the complexity of its impacts and trade-offs.

Suggested Citation

  • Paul, B.K. & Frelat, R. & Birnholz, C. & Ebong, C. & Gahigi, A. & Groot, J.C.J. & Herrero, M. & Kagabo, D.M. & Notenbaert, A. & Vanlauwe, B. & van Wijk, M.T., 2018. "Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs," Agricultural Systems, Elsevier, vol. 163(C), pages 16-26.
  • Handle: RePEc:eee:agisys:v:163:y:2018:i:c:p:16-26
    DOI: 10.1016/j.agsy.2017.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17301749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carletto, Calogero & Savastano, Sara & Zezza, Alberto, 2013. "Fact or artifact: The impact of measurement errors on the farm size–productivity relationship," Journal of Development Economics, Elsevier, vol. 103(C), pages 254-261.
    2. Tittonell, P. & Muriuki, A. & Shepherd, K.D. & Mugendi, D. & Kaizzi, K.C. & Okeyo, J. & Verchot, L. & Coe, R. & Vanlauwe, B., 2010. "The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa - A typology of smallholder farms," Agricultural Systems, Elsevier, vol. 103(2), pages 83-97, February.
    3. Hammond, James & Fraval, Simon & van Etten, Jacob & Suchini, Jose Gabriel & Mercado, Leida & Pagella, Tim & Frelat, Romain & Lannerstad, Mats & Douxchamps, Sabine & Teufel, Nils & Valbuena, Diego & va, 2017. "The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central ," Agricultural Systems, Elsevier, vol. 151(C), pages 225-233.
    4. Klapwijk, C.J. & Bucagu, C. & van Wijk, M.T. & Udo, H.M.J. & Vanlauwe, B. & Munyanziza, E. & Giller, K.E., 2014. "The ‘One cow per poor family’ programme: Current and potential fodder availability within smallholder farming systems in southwest Rwanda," Agricultural Systems, Elsevier, vol. 131(C), pages 11-22.
    5. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    6. van Wijk, Mark T., 2014. "From global economic modelling to household level analyses of food security and sustainability: How big is the gap and can we bridge it?," Food Policy, Elsevier, vol. 49(P2), pages 378-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Van der Lee & Laurens Klerkx & Bockline Omedo Bebe & Ashenafi Mengistu & Simon Oosting, 2018. "Intensification and Upgrading Dynamics in Emerging Dairy Clusters in the East African Highlands," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    2. van der Lee, Jan & Oosting, Simon & Klerkx, Laurens & Opinya, Felix & Bebe, Bockline Omedo, 2020. "Effects of proximity to markets on dairy farming intensity and market participation in Kenya and Ethiopia," Agricultural Systems, Elsevier, vol. 184(C).
    3. Ana Maria Loboguerrero & Bruce M. Campbell & Peter J. M. Cooper & James W. Hansen & Todd Rosenstock & Eva Wollenberg, 2019. "Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    4. Paul, B.K. & Epper, C.A. & Tschopp, D.J. & Long, C.T.M. & Tungani, V. & Burra, D. & Hok, L. & Phengsavanh, P. & Douxchamps, S., 2022. "Crop-livestock integration provides opportunities to mitigate environmental trade-offs in transitioning smallholder agricultural systems of the Greater Mekong Subregion," Agricultural Systems, Elsevier, vol. 195(C).
    5. Miyuki Iiyama & Athanase Mukuralinda & Jean Damascene Ndayambaje & Bernard Musana & Alain Ndoli & Jeremias G. Mowo & Dennis Garrity & Stephen Ling & Vicky Ruganzu, 2018. "Tree-Based Ecosystem Approaches (TBEAs) as Multi-Functional Land Management Strategies—Evidence from Rwanda," Sustainability, MDPI, vol. 10(5), pages 1-24, April.
    6. Diana E Lopez & Romain Frelat & Lone B Badstue, 2022. "Towards gender-inclusive innovation: Assessing local conditions for agricultural targeting," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-25, March.
    7. Kiggundu, Nicholas & Ddungu, Stanley Peter & Wanyama, Joshua & Cherotich, Sam & Mpairwe, Denis & Zziwa, Emmanuel & Mutebi, Faizal & Falcucci, Alessandra, 2019. "Greenhouse gas emissions from Uganda's cattle corridor farming systems," Agricultural Systems, Elsevier, vol. 176(C).
    8. Hammond, Jim & Rosenblum, Nathaniel & Breseman, Dana & Gorman, Léo & Manners, Rhys & van Wijk, Mark T. & Sibomana, Milindi & Remans, Roseline & Vanlauwe, Bernard & Schut, Marc, 2020. "Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda," Agricultural Systems, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Zeenatul & Sabiha, Noor E & Salim, Ruhul, 2022. "Integrated environment-smart agricultural practices: A strategy towards climate-resilient agriculture," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 59-72.
    2. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    3. Hammond, Jim & Rosenblum, Nathaniel & Breseman, Dana & Gorman, Léo & Manners, Rhys & van Wijk, Mark T. & Sibomana, Milindi & Remans, Roseline & Vanlauwe, Bernard & Schut, Marc, 2020. "Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda," Agricultural Systems, Elsevier, vol. 183(C).
    4. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    5. Falconnier, Gatien N. & Leroux, Louise & Beillouin, Damien & Corbeels, Marc & Hijmans, Robert J. & Bonilla-Cedrez, Camila & van Wijk, Mark & Descheemaeker, Katrien & Zingore, Shamie & Affholder, Franç, 2023. "Increased mineral fertilizer use on maize can improve both household food security and regional food production in East Africa," Agricultural Systems, Elsevier, vol. 205(C).
    6. Jindo, Keiji & Schut, Antonius G.T. & Langeveld, Johannes W.A., 2020. "Sustainable intensification in Western Kenya: Who will benefit?," Agricultural Systems, Elsevier, vol. 182(C).
    7. Enock Warinda & Dickson M Nyariki & Stephen Wambua & Reuben M Muasya & Munir A Hanjra, 2020. "Sustainable development in East Africa: impact evaluation of regional agricultural development projects in Burundi, Kenya, Rwanda, Tanzania, and Uganda," Natural Resources Forum, Blackwell Publishing, vol. 44(1), pages 3-39, February.
    8. Ken E. Giller & Thomas Delaune & João Vasco Silva & Mark Wijk & James Hammond & Katrien Descheemaeker & Gerrie Ven & Antonius G. T. Schut & Godfrey Taulya & Regis Chikowo & Jens A. Andersson, 2021. "Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1431-1454, December.
    9. Hammond, James & Fraval, Simon & van Etten, Jacob & Suchini, Jose Gabriel & Mercado, Leida & Pagella, Tim & Frelat, Romain & Lannerstad, Mats & Douxchamps, Sabine & Teufel, Nils & Valbuena, Diego & va, 2017. "The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central ," Agricultural Systems, Elsevier, vol. 151(C), pages 225-233.
    10. Shaun Beattie & Susannah M. Sallu, 2021. "How Does Nutrition Feature in Climate-Smart Agricultural Policy in Southern Africa? A Systematic Policy Review," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    11. Kihoro, E.M & Schoneveld, G.C. & Crane, T.A., 2021. "Pathways toward inclusive low-emission dairy development in Tanzania: Producer heterogeneity and implications for intervention design," Agricultural Systems, Elsevier, vol. 190(C).
    12. Sabine Homann-Kee Tui & Katrien Descheemaeker & Roberto O. Valdivia & Patricia Masikati & Gevious Sisito & Elisha N. Moyo & Olivier Crespo & Alex C. Ruane & Cynthia Rosenzweig, 2021. "Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment," Climatic Change, Springer, vol. 168(1), pages 1-21, September.
    13. Acosta-Alba, Ivonne & Chia, Eduardo & Andrieu, Nadine, 2019. "The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels," Agricultural Systems, Elsevier, vol. 171(C), pages 155-170.
    14. Santiago Lopez-Ridaura & Luis Barba-Escoto & Cristian Reyna & Jon Hellin & Bruno Gerard & Mark Wijk, 2019. "Food security and agriculture in the Western Highlands of Guatemala," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 817-833, August.
    15. Klaus Deininger & Denys Nizalov & Sudhir K Singh, 2013. "Are mega-farms the future of global agriculture? Exploring the farm size-productivity relationship for large commercial farms in Ukraine," Discussion Papers 49, Kyiv School of Economics.
    16. Aragón, Fernando M. & Restuccia, Diego & Rud, Juan Pablo, 2022. "Are small farms really more productive than large farms?," Food Policy, Elsevier, vol. 106(C).
    17. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    18. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    19. Klaus Deininger & Songqing Jin & Yanyan Liu & Sudhir K. Singh, 2018. "Can Labor-Market Imperfections Explain Changes in the Inverse Farm Size–Productivity Relationship? Longitudinal Evidence from Rural India," Land Economics, University of Wisconsin Press, vol. 94(2), pages 239-258.
    20. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:163:y:2018:i:c:p:16-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.