IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v57y2018icp102-110.html
   My bibliography  Save this article

Household electricity demand after the introduction of solar photovoltaic systems

Author

Listed:
  • Sekitou, Mai
  • Tanaka, Kenta
  • Managi, Shunsuke

Abstract

This study quantitatively evaluates the effect of solar photovoltaic system (PV system) installation on the actual amounts of electricity usage in Japanese households. Using consumer-level data, the effects of installing a PV system on the electricity demand are estimated in terms of the impact of the technological performance which was a direct contributor to a reduction in the electricity demand. Also, we confirm the effect of peoples’ electricity consumption behavior by installation of the PV system. As a result, we estimate that the technological performance of PV system had a major effect on the reduction of the electricity demand after the installation of a PV system. Furthermore, for each additional 1 kW increase in battery capacity, the average electricity fee savings per month are approximately 517 Japanese yen per month in the summer, 152 Japanese yen per month in the winter, and approximately 334 Japanese yen annually.

Suggested Citation

  • Sekitou, Mai & Tanaka, Kenta & Managi, Shunsuke, 2018. "Household electricity demand after the introduction of solar photovoltaic systems," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 102-110.
  • Handle: RePEc:eee:ecanpo:v:57:y:2018:i:c:p:102-110
    DOI: 10.1016/j.eap.2017.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592616302211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2017.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leahy, Eimear & Lyons, Sean, 2010. "Energy use and appliance ownership in Ireland," Energy Policy, Elsevier, vol. 38(8), pages 4265-4279, August.
    2. Henri C. Moll & Klaas Jan Noorman & Rixt Kok & Rebecka Engström & Harald Throne‐Holst & Charlotte Clark, 2005. "Pursuing More Sustainable Consumption by Analyzing Household Metabolism in European Countries and Cities," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 259-275, January.
    3. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    4. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
    5. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    6. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    7. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    8. Isamu Matsukawa, 2016. "Consumer Energy Conservation Behavior After Fukushima," SpringerBriefs in Economics, Springer, number 978-981-10-1097-2, October.
    9. Mizobuchi, Kenichi, 2008. "An empirical study on the rebound effect considering capital costs," Energy Economics, Elsevier, vol. 30(5), pages 2486-2516, September.
    10. Kenichi Mizobuchi & Kenji Takeuchi, 2012. "Using Economic Incentives to Reduce Electricity Consumption: A field Experiment in Matsuyama, Japan," International Journal of Energy Economics and Policy, Econjournals, vol. 2(4), pages 318-332.
    11. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Diyi & Qi, Suntong & Xu, Tiantong, 2023. "In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?," Energy Policy, Elsevier, vol. 174(C).
    2. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2021. "Photovoltaics and the Solar Rebound: Evidence for Germany," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242356, Verein für Socialpolitik / German Economic Association.
    3. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke & Karunarathna, Muditha, 2019. "Household demand for electricity: The role of market distortions and prices in competition policy," Energy Policy, Elsevier, vol. 134(C).
    4. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    5. Massimo Filippini & Lin Zhang, 2019. "Impacts of heat metering and efficiency retrofit policy on residential energy consumption in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 203-216, April.
    6. Kenta Tanaka & Clevo Wilson & Shunsuke Managi, 2022. "Impact of feed-in tariffs on electricity consumption," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(1), pages 49-72, January.
    7. Hyun, Suk & Taghizadeh-Hesary, Farhad & Shim, Hyoung Suk, 2021. "Modeling solar energy system demand using household-level data in Myanmar," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 629-639.
    8. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2022. "Photovoltaics and the solar rebound: Evidence for Germany," Ruhr Economic Papers 954, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papineau, Maya, 2017. "Setting the standard? A framework for evaluating the cost-effectiveness of building energy standards," Energy Economics, Elsevier, vol. 64(C), pages 63-76.
    2. Kenichi Mizobuchi & Kenji Takeuchi, 2019. "Rebound effect across seasons: evidence from the replacement of air conditioners in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(1), pages 123-140, January.
    3. Vesterberg, Mattias, 2017. "Heterogeneity in price responsiveness of electricity: Contract choice and the role of media coverage," Umeå Economic Studies 940, Umeå University, Department of Economics.
    4. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    5. Beatty, Timothy K.M. & Katare, Bhagyashree, 2018. "Low-cost approaches to increasing gym attendance," Journal of Health Economics, Elsevier, vol. 61(C), pages 63-76.
    6. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    7. Takanori Ida, Kayo Murakami, and Makoto Tanaka, 2016. "Electricity demand response in Japan: Experimental evidence from a residential photovoltaic power-generation system," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    8. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    9. Brülisauer, Marcel & Goette, Lorenz & Jiang, Zhengyi & Schmitz, Jan & Schubert, Renate, 2020. "Appliance-specific feedback and social comparisons: Evidence from a field experiment on energy conservation," Energy Policy, Elsevier, vol. 145(C).
    10. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    11. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    12. Katrin Millock & Céline Nauges, 2010. "Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(4), pages 539-565, August.
    13. Andrea Szabo & Gergely Ujhelyi, 2014. "Can Information Reduce Nonpayment for Public Utilities? Experimental Evidence from South Africa," Working Papers 2014-114-31, Department of Economics, University of Houston.
    14. Vesterberg, Mattias, 2017. "Power to the people: Electricity demand and household behavior," Umeå Economic Studies 942, Umeå University, Department of Economics.
    15. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    16. Singhal, Puja & Pahle, Michael & Kalkuhl, Matthias & Levesque, Antoine & Sommer, Stephan & Berneiser, Jessica, 2022. "Beyond good faith: Why evidence-based policy is necessary to decarbonize buildings cost-effectively in Germany," Energy Policy, Elsevier, vol. 169(C).
    17. Burlig, Fiona & Preonas, Louis & Woerman, Matt, 2020. "Panel data and experimental design," Journal of Development Economics, Elsevier, vol. 144(C).
    18. Peters, Jörg & Langbein, Jörg & Roberts, Gareth, 2016. "Policy evaluation, randomized controlled trials, and external validity—A systematic review," Economics Letters, Elsevier, vol. 147(C), pages 51-54.
    19. Ditya Agung Nurdianto, 2016. "Economic Impacts of a Carbon Tax in an Integrated ASEAN," EEPSEA Special and Technical Paper tp201604t5, Economy and Environment Program for Southeast Asia (EEPSEA), revised Apr 2016.
    20. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:57:y:2018:i:c:p:102-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.