IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v174y2022ics0167947322001050.html
   My bibliography  Save this article

Markov-switching state-space models with applications to neuroimaging

Author

Listed:
  • Degras, David
  • Ting, Chee-Ming
  • Ombao, Hernando

Abstract

State-space models (SSM) with Markov switching offer a powerful framework for detecting multiple regimes in time series, analyzing mutual dependence and dynamics within regimes, and assessing transitions between regimes. These models however present considerable computational challenges due to the exponential number of possible regime sequences to account for. In addition, high dimensionality of time series can hinder likelihood-based inference. To address these challenges, novel statistical methods for Markov-switching SSMs are proposed using maximum likelihood estimation, Expectation-Maximization (EM), and parametric bootstrap. Solutions are developed for initializing the EM algorithm, accelerating convergence, and conducting inference. These methods, which are ideally suited to massive spatio-temporal data such as brain signals, are evaluated in simulations and applications to EEG studies of epilepsy and of motor imagery are presented.

Suggested Citation

  • Degras, David & Ting, Chee-Ming & Ombao, Hernando, 2022. "Markov-switching state-space models with applications to neuroimaging," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001050
    DOI: 10.1016/j.csda.2022.107525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322001050
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    2. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    3. Hu, Lechuan & Guindani, Michele & Fortin, Norbert J. & Ombao, Hernando, 2020. "A hierarchical bayesian model for differential connectivity in multi-trial brain signals," Econometrics and Statistics, Elsevier, vol. 15(C), pages 117-135.
    4. Manshu Yang & Sy-Miin Chow, 2010. "Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 744-771, December.
    5. Prado, Raquel, 2013. "Sequential estimation of mixtures of structured autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 58-70.
    6. Stoehr, Christina & Aston, John A D & Kirch, Claudia, 2021. "Detecting changes in the covariance structure of functional time series with application to fMRI data," Econometrics and Statistics, Elsevier, vol. 18(C), pages 44-62.
    7. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    8. Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
    9. Cosslett, Stephen R. & Lee, Lung-Fei, 1985. "Serial correlation in latent discrete variable models," Journal of Econometrics, Elsevier, vol. 27(1), pages 79-97, January.
    10. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    11. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    12. Zhou, Tianni & Shumway, Robert, 2008. "One-step approximations for detecting regime changes in the state space model with application to the influenza data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2277-2291, January.
    13. Camacho, Maximo & Perez-Quiros, Gabriel & Poncela, Pilar, 2018. "Markov-switching dynamic factor models in real time," International Journal of Forecasting, Elsevier, vol. 34(4), pages 598-611.
    14. Langrock, R. & Zucchini, W., 2011. "Hidden Markov models with arbitrary state dwell-time distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 715-724, January.
    15. Ombao H. C & Raz J. A & von Sachs R. & Malow B. A, 2001. "Automatic Statistical Analysis of Bivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 543-560, June.
    16. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    17. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    18. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    19. Ombao, Hernando & von Sachs, Rainer & Guo, Wensheng, 2005. "SLEX Analysis of Multivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 519-531, June.
    20. Yang, Minxian, 2000. "Some Properties Of Vector Autoregressive Processes With Markov-Switching Coefficients," Econometric Theory, Cambridge University Press, vol. 16(1), pages 23-43, February.
    21. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Scaffidi Domianello & E. Otranto, 2023. "On the relationship between Markov Switching inference and Fuzzy Clustering: A Monte Carlo evidence," Working Paper CRENoS 202304, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.
    2. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    3. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    4. Psaradakis, Zacharias & Sola, Martin, 1998. "Finite-sample properties of the maximum likelihood estimator in autoregressive models with Markov switching," Journal of Econometrics, Elsevier, vol. 86(2), pages 369-386, June.
    5. Duncan Fong & Wayne DeSarbo, 2007. "A Bayesian methodology for simultaneously detecting and estimating regime change points and variable selection in multiple regression models for marketing research," Quantitative Marketing and Economics (QME), Springer, vol. 5(4), pages 427-453, December.
    6. Omokolade Akinsomi & Mehmet Balcilar & Rıza Demirer & Rangan Gupta, 2017. "The effect of gold market speculation on REIT returns in South Africa: a behavioral perspective," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 774-793, October.
    7. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    8. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    9. Harm Bandholz, 2005. "New Composite Leading Indicators for Hungary and Poland," ifo Working Paper Series 3, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    10. Klarl, Torben, 2020. "The response of CO2 emissions to the business cycle: New evidence for the U.S," Energy Economics, Elsevier, vol. 85(C).
    11. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    12. Adnan Haider & Musleh ud Din & Ejaz Ghani, 2011. "Consequences of Political Instability, Governance and Bureaucratic Corruption on Inflation and Growth: The Case of Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 50(4), pages 773-807.
    13. Torben Klarl, 2019. "The response of CO2 emissions to the business cycle: New evidence for the U.S," Bremen Papers on Economics & Innovation 1902, University of Bremen, Faculty of Business Studies and Economics.
    14. Firouz Fallahi & Gabriel Rodríguez, 2007. "Using Markov-Switching Models to Identify the Link between Unemployment and Criminality," Working Papers 0701E, University of Ottawa, Department of Economics.
    15. Paroli, Roberta & Spezia, Luigi, 2008. "Bayesian inference in non-homogeneous Markov mixtures of periodic autoregressions with state-dependent exogenous variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2311-2330, January.
    16. Dmitry Kulikov, 2012. "Testing for Rational Speculative Bubbles on the Estonian Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 4(1).
    17. Sergei Koulayev & Marc Rysman & Scott Schuh & Joanna Stavins, 2016. "Explaining adoption and use of payment instruments by US consumers," RAND Journal of Economics, RAND Corporation, vol. 47(2), pages 293-325, May.
    18. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    19. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    20. Maddalena Cavicchioli, 2016. "Weak VARMA representations of regime-switching state-space models," Statistical Papers, Springer, vol. 57(3), pages 705-720, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.