IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v16y2000i01p23-43_16.html
   My bibliography  Save this article

Some Properties Of Vector Autoregressive Processes With Markov-Switching Coefficients

Author

Listed:
  • Yang, Minxian

Abstract

Some statistical properties of a vector autoregressive process with Markov-switching coefficients are considered. Sufficient conditions for this nonlinear process to be covariance stationary are given. The second moments of the process are derived under the conditions. The autocovariance matrix decays at exponential rate, permitting the application of the law of large numbers. Under the stationarity conditions, although sharing the “mean-reverting” property with conventional linear stationary processes, the process offers richer short-run dynamics such as conditional heteroskedasticity, asymmetric responses, and occasional nonstationary behavior.

Suggested Citation

  • Yang, Minxian, 2000. "Some Properties Of Vector Autoregressive Processes With Markov-Switching Coefficients," Econometric Theory, Cambridge University Press, vol. 16(1), pages 23-43, February.
  • Handle: RePEc:cup:etheor:v:16:y:2000:i:01:p:23-43_16
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S026646660016102X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavicchioli, Maddalena, 2017. "Asymptotic Fisher information matrix of Markov switching VARMA models," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 124-135.
    2. Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010. "Theory and inference for a Markov switching GARCH model," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, July.
    3. Maddalena Cavicchioli, 2020. "Invertibility and VAR Representations of Time-Varying Dynamic Stochastic General Equilibrium Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 61-86, January.
    4. Adnan Haider & Musleh ud Din & Ejaz Ghani, 2011. "Consequences of Political Instability, Governance and Bureaucratic Corruption on Inflation and Growth: The Case of Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 50(4), pages 773-807.
    5. Bibi, Abdelouahab & Ghezal, Ahmed, 2015. "Consistency of quasi-maximum likelihood estimator for Markov-switching bilinear time series models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 192-202.
    6. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    7. Beg, A.B.M. Rabiul Alam & Anwar, Sajid, 2012. "Sources of volatility persistence: A case study of the U.K. pound/U.S. dollar exchange rate returns," The North American Journal of Economics and Finance, Elsevier, vol. 23(2), pages 165-184.
    8. Maddalena Cavicchioli, 2014. "Autocovariance and Linear Transformations of Markov Switching VARMA Processes," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 275-289, December.
    9. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
    10. Nebojša Malešević & Dimitrije Marković & Gunter Kanitz & Marco Controzzi & Christian Cipriani & Christian Antfolk, 2018. "Vector Autoregressive Hierarchical Hidden Markov Models for Extracting Finger Movements Using Multichannel Surface EMG Signals," Complexity, Hindawi, vol. 2018, pages 1-12, February.
    11. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
    12. Sajjad Rasoul & Coakley Jerry & Nankervis John C, 2008. "Markov-Switching GARCH Modelling of Value-at-Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-31, September.
    13. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    14. Hamilton, J.D., 2016. "Macroeconomic Regimes and Regime Shifts," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201, Elsevier.
    15. Sofia Ruiz-Suarez & Vianey Leos-Barajas & Juan Manuel Morales, 2022. "Hidden Markov and Semi-Markov Models When and Why are These Models Useful for Classifying States in Time Series Data?," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 339-363, June.
    16. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    17. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.
    18. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    19. Cavicchioli, Maddalena, 2023. "Statistical analysis of Markov switching vector autoregression models with endogenous explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    20. Aivazian, Sergey & Bereznyatskiy, Alexander & Brodsky, Boris & Darkhovsky, Boris, 2015. "Statistical analysis of variable-structure models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 84-105.
    21. Maddalena Cavicchioli, 2020. "A note on the asymptotic and exact Fisher information matrices of a Markov switching VARMA process," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 129-139, March.
    22. Degras, David & Ting, Chee-Ming & Ombao, Hernando, 2022. "Markov-switching state-space models with applications to neuroimaging," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    23. Dominique Guegan & Zhiping Lu, 2007. "A note on self-similarity for discrete time series," Post-Print halshs-00187910, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:16:y:2000:i:01:p:23-43_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.