IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v274y2020ics0306261920307091.html
   My bibliography  Save this article

Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems

Author

Listed:
  • Petkov, Ivalin
  • Gabrielli, Paolo

Abstract

This study analyzes the factors leading to the deployment of Power-to-Hydrogen (PtH2) within the optimal design of district-scale Multi-Energy Systems (MES). To this end, we utilize an optimization framework based on a mixed integer linear program that selects, sizes, and operates technologies in the MES to satisfy electric and thermal demands, while minimizing annual costs and CO2 emissions. We conduct a comprehensive uncertainty analysis that encompasses the entire set of technology (e.g. cost, efficiency, lifetime) and context (e.g. economic, policy, grid carbon footprint) input parameters, as well as various climate-referenced districts (e.g. environmental data and energy demands) at a European-scope.

Suggested Citation

  • Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920307091
    DOI: 10.1016/j.apenergy.2020.115197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferroni, Ferruccio & Hopkirk, Robert J., 2016. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 94(C), pages 336-344.
    2. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    3. Anthony F J van Raan & Gerwin van der Meulen & Willem Goedhart, 2016. "Urban Scaling of Cities in the Netherlands," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-16, January.
    4. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2016. "DESOD: a mathematical programming tool to optimally design a distributed energy system," Energy, Elsevier, vol. 100(C), pages 298-309.
    5. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    6. Luís M. A. Bettencourt & Javier Gonzales, 2016. "Science and Practice for Thriving Cities," Innovations: Technology, Governance, Globalization, MIT Press, vol. 11(1-2), pages 20-30, Winter-Sp.
    7. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    8. Virginie Mamadouh & Luiza Bialasiewicz & Paul J.M. Van steen & Piet H. Pellenbarg & Peter D. Groote, 2016. "Economic Performance of Cities in the Netherlands," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 107(2), pages 254-256, April.
    9. Ron Davis, 2008. "Teaching Note ---Teaching Project Simulation in Excel Using PERT- Beta Distributions," INFORMS Transactions on Education, INFORMS, vol. 8(3), pages 139-148, May.
    10. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    11. Otsuki, Takashi, 2017. "Costs and benefits of large-scale deployment of wind turbines and solar PV in Mongolia for international power exports," Renewable Energy, Elsevier, vol. 108(C), pages 321-335.
    12. Paul J.M. Van Steen & Piet H. Pellenbarg & Peter D. Groote, 2016. "How Future-Proof are Dutch Cities?," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 107(5), pages 654-656, December.
    13. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    14. Dong-Seok Kong & Yong-Sung Jang & Jung-Ho Huh, 2015. "Method and Case Study of Multiobjective Optimization-Based Energy System Design to Minimize the Primary Energy Use and Initial Investment Cost," Energies, MDPI, vol. 8(6), pages 1-21, June.
    15. Hoel, Michael & de Zeeuw, Aart, 2013. "Technology Agreements with Heterogeneous Countries," Memorandum 02/2013, Oslo University, Department of Economics.
    16. Florian Egli & Bjarne Steffen & Tobias S. Schmidt, 2018. "A dynamic analysis of financing conditions for renewable energy technologies," Nature Energy, Nature, vol. 3(12), pages 1084-1092, December.
    17. Pecenak, Zachary K. & Stadler, Michael & Fahy, Kelsey, 2019. "Efficient multi-year economic energy planning in microgrids," Applied Energy, Elsevier, vol. 255(C).
    18. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    19. Bonilla, Jorge & Coria, Jessica & Mohlin, Kristina & Sterner, Thomas, 2014. "Diffusion of NOx abatement technologies in Sweden," Working Papers in Economics 585, University of Gothenburg, Department of Economics.
    20. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    21. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2017. "Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation," Applied Energy, Elsevier, vol. 205(C), pages 1244-1259.
    22. Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
    23. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    24. Gabrielli, Paolo & Gazzani, Matteo & Mazzotti, Marco, 2018. "Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: Modeling framework and technology assessment," Applied Energy, Elsevier, vol. 221(C), pages 557-575.
    25. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    26. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
    27. Jan W.S. Fredriks & Bartjan J.W. Pennink & Togar M. Simatupang & Joko Siswanto, 2014. "Modelling a technology push by using hybrid franchising," International Journal of Entrepreneurship and Small Business, Inderscience Enterprises Ltd, vol. 22(1), pages 64-88.
    28. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    29. Knysh P.V., 2014. "Technology Of Teams Building In The Public Service System," Management, Academy of Municipal Administration, vol. 10(2), pages 210-219, February.
    30. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    31. ., 2014. "The fundamental forces: technology, tastes and values," Chapters, in: The Political Economy of Status, chapter 3, pages 45-57, Edward Elgar Publishing.
    32. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    33. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    34. Mavrotas, George & Florios, Kostas & Vlachou, Dimitra, 2010. "Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters," MPRA Paper 105754, University Library of Munich, Germany.
    35. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    36. Mirkhani, Sh. & Saboohi, Y., 2012. "Stochastic modeling of the energy supply system with uncertain fuel price – A case of emerging technologies for distributed power generation," Applied Energy, Elsevier, vol. 93(C), pages 668-674.
    37. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    38. ., 2016. "Co-creating cities: future challenges," Chapters, in: Urban Strategies for Culture-Driven Growth, chapter 9, pages 159-168, Edward Elgar Publishing.
    39. Ana Rodrigues & Denise Machado & Tomaz Dentinho, 2017. "Electrical Energy Storage Systems Feasibility; the Case of Terceira Island," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    40. Lara M. P. Bryant, 2014. "Geospatial Technology Curriculum Development," International Journal of Applied Geospatial Research (IJAGR), IGI Global, vol. 5(1), pages 60-69, January.
    41. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    42. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    43. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    44. Fthenakis, Vasilis & Kim, Hyung Chul, 2010. "Life-cycle uses of water in U.S. electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2039-2048, September.
    45. Narayan, Nishant & Papakosta, Thekla & Vega-Garita, Victor & Qin, Zian & Popovic-Gerber, Jelena & Bauer, Pavol & Zeman, Miroslav, 2018. "Estimating battery lifetimes in Solar Home System design using a practical modelling methodology," Applied Energy, Elsevier, vol. 228(C), pages 1629-1639.
    46. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    47. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    48. Itf, 2016. "Shared Mobility: Innovation for Liveable Cities," International Transport Forum Policy Papers 21, OECD Publishing.
    49. van den Broek, Machteld & Berghout, Niels & Rubin, Edward S., 2015. "The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1296-1322.
    50. Moret, Stefano & Codina Gironès, Víctor & Bierlaire, Michel & Maréchal, François, 2017. "Characterization of input uncertainties in strategic energy planning models," Applied Energy, Elsevier, vol. 202(C), pages 597-617.
    51. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    52. Bakhtyar, B. & Fudholi, A. & Hassan, Kabir & Azam, M. & Lim, C.H. & Chan, N.W. & Sopian, K., 2017. "Review of CO2 price in Europe using feed-in tariff rates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 685-691.
    53. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    54. Majewski, Dinah Elena & Lampe, Matthias & Voll, Philip & Bardow, André, 2017. "TRusT: A Two-stage Robustness Trade-off approach for the design of decentralized energy supply systems," Energy, Elsevier, vol. 118(C), pages 590-599.
    55. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    56. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    57. Uwe Blien & Helge Sanner, 2014. "Technological progress and employment," Economics Bulletin, AccessEcon, vol. 34(1), pages 245-251.
    58. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    59. Paul J.M. Van Steen & Piet H. Pellenbarg & Peter D. Groote, 2016. "Population Growth of Cities in the Netherlands," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 107(1), pages 126-128, February.
    60. Claudia Rahmann & Benjamin Mac-Clure & Vijay Vittal & Felipe Valencia, 2017. "Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications," Energies, MDPI, vol. 10(7), pages 1-13, June.
    61. Merkel, Erik & McKenna, Russell & Fichtner, Wolf, 2015. "Optimisation of the capacity and the dispatch of decentralised micro-CHP systems: A case study for the UK," Applied Energy, Elsevier, vol. 140(C), pages 120-134.
    62. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    63. ., 2014. "Technological evolution and innovation networks," Chapters, in: Simulating Innovation, chapter 7, pages 192-238, Edward Elgar Publishing.
    64. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    65. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    66. Piergiorgio Re, 2016. "Forum. Marketing and cities: The Turin experience," MERCATI & COMPETITIVIT?, FrancoAngeli Editore, vol. 2016(2), pages 41-45.
    67. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Rocco, Vittorio & Rossi, Joao Luis, 2018. "Hybrid renewable energy systems for renewable integration in microgrids: Influence of sizing on performance," Energy, Elsevier, vol. 152(C), pages 744-758.
    68. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    69. Karmellos, M. & Georgiou, P.N. & Mavrotas, G., 2019. "A comparison of methods for the optimal design of Distributed Energy Systems under uncertainty," Energy, Elsevier, vol. 178(C), pages 318-333.
    70. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    71. Kang, Jing & Wang, Shengwei, 2018. "Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations," Applied Energy, Elsevier, vol. 231(C), pages 615-627.
    72. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    2. Murray, Portia & Orehounig, Kristina & Grosspietsch, David & Carmeliet, Jan, 2018. "A comparison of storage systems in neighbourhood decentralized energy system applications from 2015 to 2050," Applied Energy, Elsevier, vol. 231(C), pages 1285-1306.
    3. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    4. Petkov, Ivalin & Gabrielli, Paolo & Spokaite, Marija, 2021. "The impact of urban district composition on storage technology reliance: trade-offs between thermal storage, batteries, and power-to-hydrogen," Energy, Elsevier, vol. 224(C).
    5. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    6. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    7. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    8. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    9. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    10. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    11. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    13. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    14. Eveloy, Valerie & Gebreegziabher, Tesfaldet, 2019. "Excess electricity and power-to-gas storage potential in the future renewable-based power generation sector in the United Arab Emirates," Energy, Elsevier, vol. 166(C), pages 426-450.
    15. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    16. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    17. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    18. Lerbinger, Alicia & Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof, 2023. "Optimal decarbonization strategies for existing districts considering energy systems and retrofits," Applied Energy, Elsevier, vol. 352(C).
    19. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    20. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920307091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.