IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v103y2019icp71-84.html
   My bibliography  Save this article

A review and evaluation of thermal insulation materials and methods for thermal energy storage systems

Author

Listed:
  • Villasmil, Willy
  • Fischer, Ludger J.
  • Worlitschek, Jörg

Abstract

As thermal energy storage (TES) technologies gain more significance in the global energy market, there is an increasing demand to improve their energy efficiency and, more importantly, reduce their costs. In this article, two different methods for insulating TES systems that are either incorporated inside residential buildings or buried underground in direct vicinity of the building are reviewed and discussed. Boundary conditions are storage volumes in the range 10 – 1000 m3 and storage temperatures up to 90 °C. The first method involves the application of thermal insulation materials on the outside of the storage. Thermophysical properties and costs of conventional materials (such as mineral wools and organic foams) are compared against those of state-of-the-art products such as vacuum insulation panels and aerogels. A parametric comparative analysis is conducted to evaluate the combined costs of thermal insulation and living space occupied by the thermal insulation for TES systems integrated inside buildings. It is shown, for example, that the use of vacuum insulation panels becomes advantageous when the economic value of saving living space outweighs the extra cost of the insulation itself. The second method discussed is the so-called evacuated powders, in which the insulation is realized by creating an evacuated double-wall powder-containing envelope around the storage. The theoretical foundations of this method are discussed and the properties of commonly used powders – such as expanded perlite and fumed silica – are provided. Reference costs of double-wall vacuum-insulated TES tanks are provided and the use of evacuated powders is compared against the application of conventional insulation materials.

Suggested Citation

  • Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
  • Handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:71-84
    DOI: 10.1016/j.rser.2018.12.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118308347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.12.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    2. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    3. Alam, M. & Singh, H. & Limbachiya, M.C., 2011. "Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions," Applied Energy, Elsevier, vol. 88(11), pages 3592-3602.
    4. Persson, Johannes & Westermark, Mats, 2013. "Low-energy buildings and seasonal thermal energy storages from a behavioral economics perspective," Applied Energy, Elsevier, vol. 112(C), pages 975-980.
    5. Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
    6. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    7. Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.
    8. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    9. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    10. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    11. Nematchoua, Modeste Kameni & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson & René, Tchinda & Orosa, José A. & Elvis, Watis & Meukam, Pierre, 2015. "Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1192-1202.
    12. Navarro, Lidia & de Gracia, Alvaro & Niall, Dervilla & Castell, Albert & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system," Renewable Energy, Elsevier, vol. 85(C), pages 1334-1356.
    13. Colclough, Shane & Griffiths, Philip, 2016. "Financial analysis of an installed small scale seasonal thermal energy store," Renewable Energy, Elsevier, vol. 86(C), pages 422-428.
    14. Gijs J. H. de Goeijen & Gerard J. M. Smit & Johann L. Hurink, 2017. "Improving an Integer Linear Programming Model of an Ecovat Buffer by Adding Long-Term Planning," Energies, MDPI, vol. 10(12), pages 1-18, December.
    15. Kalnæs, Simen Edsjø & Jelle, Bjørn Petter, 2014. "Vacuum insulation panel products: A state-of-the-art review and future research pathways," Applied Energy, Elsevier, vol. 116(C), pages 355-375.
    16. Alfonso Capozzoli & Stefano Fantucci & Fabio Favoino & Marco Perino, 2015. "Vacuum Insulation Panels: Analysis of the Thermal Performance of Both Single Panel and Multilayer Boards," Energies, MDPI, vol. 8(4), pages 1-20, March.
    17. Alam, M. & Singh, H. & Suresh, S. & Redpath, D.A.G., 2017. "Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings," Applied Energy, Elsevier, vol. 188(C), pages 1-8.
    18. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    19. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    20. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    21. Köfinger, M. & Schmidt, R.R. & Basciotti, D. & Terreros, O. & Baldvinsson, I. & Mayrhofer, J. & Moser, S. & Tichler, R. & Pauli, H., 2018. "Simulation based evaluation of large scale waste heat utilization in urban district heating networks: Optimized integration and operation of a seasonal storage," Energy, Elsevier, vol. 159(C), pages 1161-1174.
    22. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    23. Berardi, Umberto, 2015. "The development of a monolithic aerogel glazed window for an energy retrofitting project," Applied Energy, Elsevier, vol. 154(C), pages 603-615.
    24. Kamiuto, K. & Miyamoto, T. & Saitoh, S., 1999. "Thermal characteristics of a solar tank with aerogel surface insulation," Applied Energy, Elsevier, vol. 62(3), pages 113-123, March.
    25. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    26. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dahash, Abdulrahman & Ochs, Fabian & Tosatto, Alice & Streicher, Wolfgang, 2020. "Toward efficient numerical modeling and analysis of large-scale thermal energy storage for renewable district heating," Applied Energy, Elsevier, vol. 279(C).
    2. Fateh Mebarek-Oudina & Ines Chabani, 2023. "Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems," Energies, MDPI, vol. 16(3), pages 1-21, January.
    3. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    4. Manuela Neri & Mariagrazia Pilotelli & Marco Traversi & Elisa Levi & Edoardo Alessio Piana & Mariasole Bannó & Eva Cuerva & Pablo Pujadas & Alfredo Guardo, 2021. "Conversion of End-of-Life Household Materials into Building Insulating Low-Cost Solutions for the Development of Vulnerable Contexts: Review and Outlook towards a Circular and Sustainable Economy," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    5. Anis Bahar & Sofiane Belhabib & Sofiane Guessasma & Ferhat Benmahiddine & Ameur El Amine Hamami & Rafik Belarbi, 2022. "Mechanical and Thermal Properties of 3D Printed Polycarbonate," Energies, MDPI, vol. 15(10), pages 1-11, May.
    6. Anda Fridrihsone & Arnis Abolins & Mikelis Kirpluks, 2020. "Screening Life Cycle Assessment of Tall Oil-Based Polyols Suitable for Rigid Polyurethane Foams," Energies, MDPI, vol. 13(20), pages 1-13, October.
    7. Flavio Scrucca & Domenico Palladino, 2023. "Integration of Energy Simulations and Life Cycle Assessment in Building Refurbishment: An Affordability Comparison of Thermal Insulation Materials through a New Sustainability Index," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    8. Chen, Jingping & Feng, Shaohang, 2020. "Evaluating a large geothermal absorber’s energy extraction and storage performance in a common geological condition," Applied Energy, Elsevier, vol. 279(C).
    9. Amiri, Leyla & de Brito, Marco Antonio Rodrigues & Baidya, Durjoy & Kuyuk, Ali Fahrettin & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P., 2019. "Numerical investigation of rock-pile based waste heat storage for remote communities in cold climates," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Pessoa, S. & Guimarães, A.S. & Lucas, S.S. & Simões, N., 2021. "3D printing in the construction industry - A systematic review of the thermal performance in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Mishan Shrestha & Hom Bahadur Rijal, 2023. "Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings," Energies, MDPI, vol. 16(3), pages 1-33, January.
    14. Jacek Kasperski & Oluwafunmilola Oladipo, 2023. "Energy, Volume and Cost Analyses of High Temperature Seasonal Thermal Storage for Plus Energy House," Energies, MDPI, vol. 16(12), pages 1-21, June.
    15. Ochs, Fabian & Dahash, Abdulrahman & Tosatto, Alice & Bianchi Janetti, Michele, 2020. "Techno-economic planning and construction of cost-effective large-scale hot water thermal energy storage for Renewable District heating systems," Renewable Energy, Elsevier, vol. 150(C), pages 1165-1177.
    16. Baidya, Durjoy & de Brito, Marco Antonio Rodrigues & Ghoreishi-Madiseh, Seyed Ali, 2020. "Techno-economic feasibility investigation of incorporating an energy storage with an exhaust heat recovery system for underground mines in cold climatic regions," Applied Energy, Elsevier, vol. 273(C).
    17. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. David Vérez & Emiliano Borri & Alicia Crespo & Gabriel Zsembinszki & Belal Dawoud & Luisa F. Cabeza, 2021. "Experimental Study of a Small-Size Vacuum Insulated Water Tank for Building Applications," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    20. Denis Okello & Robinson Omony & Karidewa Nyeinga & Jimmy Chaciga, 2022. "Performance Analysis of Thermal Energy Storage System Integrated with a Cooking Unit," Energies, MDPI, vol. 15(23), pages 1-19, November.
    21. Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
    22. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    23. Le Minh Nhut & Waseem Raza & Youn Cheol Park, 2020. "A Parametric Study of a Solar-Assisted House Heating System with a Seasonal Underground Thermal Energy Storage Tank," Sustainability, MDPI, vol. 12(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    2. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    3. Antoniadis, Christodoulos N. & Martinopoulos, Georgios, 2019. "Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS," Renewable Energy, Elsevier, vol. 137(C), pages 56-66.
    4. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    5. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).
    6. Dannemand, Mark & Dragsted, Janne & Fan, Jianhua & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures," Applied Energy, Elsevier, vol. 169(C), pages 72-80.
    7. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Tulus, Victor & Abokersh, Mohamed Hany & Cabeza, Luisa F. & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2019. "Economic and environmental potential for solar assisted central heating plants in the EU residential sector: Contribution to the 2030 climate and energy EU agenda," Applied Energy, Elsevier, vol. 236(C), pages 318-339.
    9. Nordbeck, Johannes & Bauer, Sebastian & Dahmke, Andreas & Delfs, Jens-Olaf & Gomes, Hugo & Hailemariam, Henok & Kinias, Constantin & Meier zu Beerentrup, Kerstin & Nagel, Thomas & Smirr, Christian & V, 2020. "A modular cement-based subsurface heat storage: Performance test, model development and thermal impacts," Applied Energy, Elsevier, vol. 279(C).
    10. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    11. Dannemand, Mark & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling," Applied Energy, Elsevier, vol. 177(C), pages 591-601.
    12. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    14. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    15. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.
    17. Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P. & Amiri, Leyla, 2017. "Performance evaluation of large scale rock-pit seasonal thermal energy storage for application in underground mine ventilation," Applied Energy, Elsevier, vol. 185(P2), pages 1940-1947.
    18. Nelson, James & Johnson, Nathan G. & Chinimilli, Prudhvi Tej & Zhang, Wenlong, 2019. "Residential cooling using separated and coupled precooling and thermal energy storage strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    20. Almalkawi, Areej T. & Soroushian, Parviz & Shrestha, Som S., 2019. "Evaluation of the Energy-Efficiency of an Aerated Slurry-Infiltrated Mesh Building System with Biomass-Based Insulation," Renewable Energy, Elsevier, vol. 133(C), pages 797-806.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:71-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.