IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032121000290.html
   My bibliography  Save this article

Seasonal thermal energy storage: A techno-economic literature review

Author

Listed:
  • Yang, Tianrun
  • Liu, Wen
  • Kramer, Gert Jan
  • Sun, Qie

Abstract

Seasonal thermal energy storage (STES) holds great promise for storing summer heat for winter use. It allows renewable resources to meet the seasonal heat demand without resorting to fossil-based back up. This paper presents a techno-economic literature review of STES. Six STES technologies are reviewed and an overview of the representative projects is provided. The key project parameters and operation performances, including the main heat source fraction, storage efficiency, and energy density, are investigated in the technical review. The economic viability is assessed in terms of the levelized cost of heat (LCOH), storage volume cost, and storage capacity cost. The results show that the tank and pit thermal energy storage exhibits relatively balanced and better performances in both technical and economic characteristics. Borehole and aquifer thermal energy storage exhibits better economic performance, while latent and thermochemical heat storage exhibits better technical performance. Compared to the reference heating alternatives, i.e., natural gas and solar heating for decentralized systems, only pit and low-temperature aquifer thermal energy storage is economically competitive. The LCOH of latent heat storage is the highest. To be economically competitive in the heating market, the LCOH of STES needs to be reduced by half to four times less. Meanwhile, a decision tree for STES selection is introduced to facilitate practical engineering. In compiling the data for this review, we find that STES economic studies are limited in number and often lack transparency in their reporting. Going forward, this should be improved to provide a more solid base for policymaking.

Suggested Citation

  • Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032121000290
    DOI: 10.1016/j.rser.2021.110732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickinson, Ryan M. & Cruickshank, Cynthia A. & Harrison, Stephen J., 2013. "Charge and discharge strategies for a multi-tank thermal energy storage," Applied Energy, Elsevier, vol. 109(C), pages 366-373.
    2. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    3. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    4. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    5. Walch, Alina & Mohajeri, Nahid & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2021. "Quantifying the technical geothermal potential from shallow borehole heat exchangers at regional scale," Renewable Energy, Elsevier, vol. 165(P1), pages 369-380.
    6. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    7. Hegazy, Adel A., 2007. "Effect of inlet design on the performance of storage-type domestic electrical water heaters," Applied Energy, Elsevier, vol. 84(12), pages 1338-1355, December.
    8. Wesselink, Maxim & Liu, Wen & Koornneef, Joris & van den Broek, Machteld, 2018. "Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands," Energy, Elsevier, vol. 147(C), pages 477-489.
    9. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    10. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    11. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    12. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    13. Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
    14. Ochs, Fabian & Dahash, Abdulrahman & Tosatto, Alice & Bianchi Janetti, Michele, 2020. "Techno-economic planning and construction of cost-effective large-scale hot water thermal energy storage for Renewable District heating systems," Renewable Energy, Elsevier, vol. 150(C), pages 1165-1177.
    15. Huang, Junpeng & Fan, Jianhua & Furbo, Simon & Chen, Daochuan & Dai, Yanjun & Kong, Weiqiang, 2019. "Economic analysis and optimization of combined solar district heating technologies and systems," Energy, Elsevier, vol. 186(C).
    16. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2014. "Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance," Applied Energy, Elsevier, vol. 129(C), pages 177-186.
    17. Zondag, Herbert & Kikkert, Benjamin & Smeding, Simon & Boer, Robert de & Bakker, Marco, 2013. "Prototype thermochemical heat storage with open reactor system," Applied Energy, Elsevier, vol. 109(C), pages 360-365.
    18. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    19. Gao, Qing & Li, Ming & Yu, Ming & Spitler, Jeffrey D. & Yan, Y.Y., 2009. "Review of development from GSHP to UTES in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1383-1394, August.
    20. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    21. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W., 2014. "Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application," Energy, Elsevier, vol. 67(C), pages 63-73.
    22. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    23. Chen, Shuqin & Zhu, Yipan & Chen, Yue & Liu, Wei, 2020. "Usage strategy of phase change materials in plastic greenhouses, in hot summer and cold winter climate," Applied Energy, Elsevier, vol. 277(C).
    24. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
    25. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    26. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    27. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    28. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    29. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    30. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    31. Mahon, D. & Henshall, P. & Claudio, G. & Eames, P.C., 2020. "Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 1799-1807.
    32. Giordano, N. & Comina, C. & Mandrone, G. & Cagni, A., 2016. "Borehole thermal energy storage (BTES). First results from the injection phase of a living lab in Torino (NW Italy)," Renewable Energy, Elsevier, vol. 86(C), pages 993-1008.
    33. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    34. Huang, Junpeng & Fan, Jianhua & Furbo, Simon, 2019. "Feasibility study on solar district heating in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 53-64.
    35. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    36. Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
    37. Johannes, Kévyn & Kuznik, Frédéric & Hubert, Jean-Luc & Durier, Francois & Obrecht, Christian, 2015. "Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings," Applied Energy, Elsevier, vol. 159(C), pages 80-86.
    38. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    39. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
    40. Chandra, Yogender Pal & Matuska, Tomas, 2020. "Numerical prediction of the stratification performance in domestic hot water storage tanks," Renewable Energy, Elsevier, vol. 154(C), pages 1165-1179.
    41. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    42. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    43. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Zhixiong & Wu, Wei & Leung, Michael K.H., 2022. "On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Liu, Tianye & Yang, Zhen & Duan, Yuanyuan, 2023. "Short- and long-duration cooperative energy storage system: Optimizing sizing and comparing rule-based strategies," Energy, Elsevier, vol. 281(C).
    3. Daniilidis, Alexandros & Mindel, Julian E. & De Oliveira Filho, Fleury & Guglielmetti, Luca, 2022. "Techno-economic assessment and operational CO2 emissions of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) using demand-driven and subsurface-constrained dimensioning," Energy, Elsevier, vol. 249(C).
    4. Sun, X.Y. & Zhong, X.H. & Zhang, M.Y. & Zhou, T., 2022. "Experimental investigation on a novel wind-to-heat system with high efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. He, Xin & Wang, Huanran & Li, Ruixiong & Sun, Hao & Chen, Hao & Li, ChengChen & Ge, Gangqiang & Tao, Feiyue, 2022. "Thermo-conversion of a physical energy storage system with high-energy density: Combination of thermal energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 239(PE).
    6. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
    7. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Perera, A.T.D. & Soga, Kenichi & Xu, Yujie & Nico, Peter S. & Hong, Tianzhen, 2023. "Enhancing flexibility for climate change using seasonal energy storage (aquifer thermal energy storage) in distributed energy systems," Applied Energy, Elsevier, vol. 340(C).
    9. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    11. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
    12. Alicia Crespo & Cèsar Fernández & Alvaro de Gracia & Andrea Frazzica, 2022. "Solar-Driven Sorption System for Seasonal Heat Storage under Optimal Control: Study for Different Climatic Zones," Energies, MDPI, vol. 15(15), pages 1-23, August.
    13. Gunther Friedl & Stefan Reichelstein & Amadeus Bach & Maximilian Blaschke & Lukas Kemmer, 2023. "Applications of the levelized cost concept," Journal of Business Economics, Springer, vol. 93(6), pages 1125-1148, August.
    14. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Evangelos I. Sakellariou & Petros J. Axaopoulos & Bill Vaneck Bot & Ioannis E. Sarris, 2022. "Energy Performance Evaluation of a Solar PVT Thermal Energy Storage System Based on Small Size Borefield," Energies, MDPI, vol. 15(21), pages 1-19, October.
    16. Dahash, Abdulrahman & Ochs, Fabian & Tosatto, Alice, 2021. "Techno-economic and exergy analysis of tank and pit thermal energy storage for renewables district heating systems," Renewable Energy, Elsevier, vol. 180(C), pages 1358-1379.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    2. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    5. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    7. Ushamah, Hafiz Muhammad & Ahmed, Naveed & Elfeky, K.E. & Mahmood, Mariam & Qaisrani, Mumtaz A. & Waqas, Adeel & Zhang, Qian, 2022. "Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan," Renewable Energy, Elsevier, vol. 199(C), pages 1639-1656.
    8. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    9. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    10. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    11. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    12. Szczęśniak, Arkadiusz & Milewski, Jarosław & Dybiński, Olaf & Futyma, Kamil & Skibiński, Jakub & Martsinchyk, Aliaksandr, 2023. "Dynamic simulation of a four tank 200 m3 seasonal thermal energy storage system oriented to air conditioning at a dietary supplements factory," Energy, Elsevier, vol. 264(C).
    13. Narula, Kapil & de Oliveira Filho, Fleury & Villasmil, Willy & Patel, Martin K., 2020. "Simulation method for assessing hourly energy flows in district heating system with seasonal thermal energy storage," Renewable Energy, Elsevier, vol. 151(C), pages 1250-1268.
    14. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    15. Chen, Jingping & Feng, Shaohang, 2020. "Evaluating a large geothermal absorber’s energy extraction and storage performance in a common geological condition," Applied Energy, Elsevier, vol. 279(C).
    16. Dahash, Abdulrahman & Ochs, Fabian & Tosatto, Alice & Streicher, Wolfgang, 2020. "Toward efficient numerical modeling and analysis of large-scale thermal energy storage for renewable district heating," Applied Energy, Elsevier, vol. 279(C).
    17. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    18. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    19. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    20. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032121000290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.