IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp1259-1267.html
   My bibliography  Save this article

A novel dataset of emission abatement sector extended input-output table for environmental policy analysis

Author

Listed:
  • Wang, Ke
  • Wang, Jiayu
  • Wei, Yi-Ming
  • Zhang, Chi

Abstract

Environmentally extended input-output table (EEIOT), a balanced matrix of industrial commodity and environmental resources, is widely used to evaluate environmental policy impacts. However, the existing EEIOTs contain energy consumption and pollution emission but neglect emission abatement cost and benefit. In this study, a novel Chinese emission abatement sector extended input-output table (EAS-IOT) is developed through introducing abatement cost, emission charge and abatement benefit into the conventional input-output table. Furthermore, this new EAS-IOT is applied to estimate the environmental efficiency and assess the effects of environmental policies on economy and environment. Results show that the new framework of EAS-IOT has advantage on solving the problem of biased efficiency estimation related to the conventional input-output table.

Suggested Citation

  • Wang, Ke & Wang, Jiayu & Wei, Yi-Ming & Zhang, Chi, 2018. "A novel dataset of emission abatement sector extended input-output table for environmental policy analysis," Applied Energy, Elsevier, vol. 231(C), pages 1259-1267.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1259-1267
    DOI: 10.1016/j.apenergy.2018.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Xiangzheng Deng & Fan Zhang & Zhan Wang & Xing Li & Tao Zhang, 2014. "An Extended Input Output Table Compiled for Analyzing Water Demand and Consumption at County Level in China," Sustainability, MDPI, vol. 6(6), pages 1-20, May.
    2. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    3. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    4. Tukker, Arnold & Poliakov, Evgueni & Heijungs, Reinout & Hawkins, Troy & Neuwahl, Frederik & Rueda-Cantuche, José M. & Giljum, Stefan & Moll, Stephan & Oosterhaven, Jan & Bouwmeester, Maaike, 2009. "Towards a global multi-regional environmentally extended input-output database," Ecological Economics, Elsevier, vol. 68(7), pages 1928-1937, May.
    5. Hubacek, Klaus & Sun, Laixiang, 2001. "A scenario analysis of China's land use and land cover change: incorporating biophysical information into input-output modeling," Structural Change and Economic Dynamics, Elsevier, vol. 12(4), pages 367-397, December.
    6. Reynolds, Christian John & Piantadosi, Julia & Buckley, Jonathan David & Weinstein, Philip & Boland, John, 2015. "Evaluation of the environmental impact of weekly food consumption in different socio-economic households in Australia using environmentally extended input–output analysis," Ecological Economics, Elsevier, vol. 111(C), pages 58-64.
    7. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," AMSE Working Papers 1548, Aix-Marseille School of Economics, France, revised 10 Nov 2015.
    8. Min Zhang & Guangyu Wang & Yi Gao & Zhenqi Wang & Feng Mi, 2017. "Trade-Offs between Economic and Environmental Optimization of the Forest Biomass Generation Supply Chain in Inner Mongolia, China," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    9. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    10. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input–output analysis for China: A survey of the literature," Energy Economics, Elsevier, vol. 48(C), pages 81-88.
    11. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," Working Papers halshs-01247183, HAL.
    12. Sai Liang & Tiantian Feng & Shen Qu & Anthony S.F. Chiu & Xiaoping Jia & Ming Xu, 2017. "Developing the Chinese Environmentally Extended Input-Output (CEEIO) Database," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 953-965, August.
    13. Rocco, Matteo V. & Colombo, Emanuela, 2016. "Internalization of human labor in embodied energy analysis: Definition and application of a novel approach based on Environmentally extended Input-Output analysis," Applied Energy, Elsevier, vol. 182(C), pages 590-601.
    14. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    15. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    16. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    17. Ke Wang, 2016. "Potential carbon emission abatement cost recovery from carbon emission trading in China: an estimation of industry sector," CEEP-BIT Working Papers 94, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    18. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    19. Mahlberg, Bernhard & Luptacik, Mikulas, 2014. "Eco-efficiency and eco-productivity change over time in a multisectoral economic system," European Journal of Operational Research, Elsevier, vol. 234(3), pages 885-897.
    20. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    21. Li, J.S. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2015. "Mercury emissions by Beijing׳s fossil energy consumption: Based on environmentally extended input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1167-1175.
    22. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.
    23. Osmo Forssell & Karen Polenske, 1998. "Introduction: Input-Output and the Environment," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 91-97.
    24. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wanlu & Cheng, Yuanyuan & Lin, Xiqiao & Yao, Xin, 2019. "How does the implementation of the Policy of Electricity Substitution influence green economic growth in China?," Energy Policy, Elsevier, vol. 131(C), pages 251-261.
    2. Yubing Wang & Kai Zhu & Xiao Xiong & Jianuo Yin & Haoran Yan & Yuan Zhang & Hai Liu, 2022. "Assessment of the Ecological Compensation Standards for Cross-Basin Water Diversion Projects from the Perspective of Main Headwater and Receiver Areas," IJERPH, MDPI, vol. 20(1), pages 1-31, December.
    3. Anh Quynh Tang & Takeshi Mizunoya, 2021. "A Study on Selecting Greenhouse Gas Reduction Options: A Simulation Analysis for Vietnam," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    4. Cristian Mardones & Darling Silva, 2023. "Evaluation of Non-survey Methods for the Construction of Regional Input–Output Matrices When There is Partial Historical Information," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1173-1205, March.
    5. Liu, Lirong & Huang, Guohe & Baetz, Brian & Guan, Yuru & Zhang, Kaiqiang, 2020. "Multi-Dimensional Hypothetical Fuzzy Risk Simulation model for Greenhouse Gas mitigation policy development," Applied Energy, Elsevier, vol. 261(C).
    6. Jiekun Song & Lina Jiang & Zeguo He & Zhicheng Liu & Xueli Leng, 2022. "Characteristics Analysis and Identification of Key Sectors of Air Pollutant Emissions in China from the Perspective of Complex Metabolic Network," IJERPH, MDPI, vol. 19(15), pages 1-28, July.
    7. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    8. Cristian Mardones & Darling Silva, 2021. "Estimation of regional input coefficients and output multipliers for the regions of Chile," Papers in Regional Science, Wiley Blackwell, vol. 100(4), pages 875-889, August.
    9. Wang, Yizhong & Hang, Ye & Jeong, Sujong & Wang, Qunwei, 2023. "Intersectoral transfers and drivers of net CO2 emissions in China incorporating sources and sinks," Technological Forecasting and Social Change, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    2. Wang, Ke & Yang, Kexin & Wei, Yi-Ming & Zhang, Chi, 2018. "Shadow prices of direct and overall carbon emissions in China’s construction industry: A parametric directional distance function-based sensitive estimation," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 180-193.
    3. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    4. Wang, Yizhong & Hang, Ye & Jeong, Sujong & Wang, Qunwei, 2023. "Intersectoral transfers and drivers of net CO2 emissions in China incorporating sources and sinks," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    5. Pan He & Beiming Cai & Giovanni Baiocchi & Zhu Liu, 2021. "Drivers of GHG emissions from dietary transition patterns in China: Supply versus demand options," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 707-719, June.
    6. Mohammad Aghapour Sabbaghi & Afsaneh Naeimifar, 2022. "Analysis of import substitution policy with an emphasis on environmental issues based on environmental input–output (EIO) model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14130-14162, December.
    7. Zhao, Weigang & Cao, Yunfei & Miao, Bo & Wang, Ke & Wei, Yi-Ming, 2018. "Impacts of shifting China's final energy consumption to electricity on CO2 emission reduction," Energy Economics, Elsevier, vol. 71(C), pages 359-369.
    8. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    9. Philipp Schepelmann & An Vercalsteren & José Acosta-Fernandez & Mathieu Saurat & Katrien Boonen & Maarten Christis & Giovanni Marin & Roberto Zoboli & Cathy Maguire, 2020. "Driving Forces of Changing Environmental Pressures from Consumption in the European Food System," Sustainability, MDPI, vol. 12(19), pages 1-30, October.
    10. Shepard, Jun U. & Pratson, Lincoln F., 2020. "Hybrid input-output analysis of embodied energy security," Applied Energy, Elsevier, vol. 279(C).
    11. Rocco, Matteo V. & Di Lucchio, Alberto & Colombo, Emanuela, 2017. "Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach," Applied Energy, Elsevier, vol. 194(C), pages 832-844.
    12. Kaixin Huang & Matthew J. Eckelman, 2022. "Appending material flows to the National Energy Modeling System (NEMS) for projecting the physical economy of the United States," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 294-308, February.
    13. Kan, Siyi & Chen, Bin & Han, Mengyao & Hayat, Tasawar & Alsulami, Hamed & Chen, Guoqian, 2021. "China’s forest land use change in the globalized world economy: Foreign trade and unequal household consumption," Land Use Policy, Elsevier, vol. 103(C).
    14. Duarte, Rosa & Feng, Kuishuang & Hubacek, Klaus & Sánchez-Chóliz, Julio & Sarasa, Cristina & Sun, Laixiang, 2016. "Modeling the carbon consequences of pro-environmental consumer behavior," Applied Energy, Elsevier, vol. 184(C), pages 1207-1216.
    15. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    16. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    17. Font Vivanco, David & Nechifor, Victor & Freire-González, Jaume & Calzadilla, Alvaro, 2021. "Economy-wide rebound makes UK’s electric car subsidy fall short of expectations," Applied Energy, Elsevier, vol. 297(C).
    18. Weigang Zhao & Yunfei Cao & Bo Miao & Ke Wang & Yi-Ming Wei, 2018. "Impacts of shifting China¡¯s final energy consumption to electricity on CO2 emission reduction," CEEP-BIT Working Papers 115, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    20. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).

    More about this item

    Keywords

    Data on emission abatement cost and benefit; Extended input-output table; Emission abatement sector; Environmental policy;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1259-1267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.