IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v195y2023ics0040162523004432.html
   My bibliography  Save this article

Intersectoral transfers and drivers of net CO2 emissions in China incorporating sources and sinks

Author

Listed:
  • Wang, Yizhong
  • Hang, Ye
  • Jeong, Sujong
  • Wang, Qunwei

Abstract

For China to achieve carbon neutrality, the intersectoral transfers and drivers of net CO2 emissions (NCE) must be thoroughly and accurately investigated. However, it appears that no research has been conducted on NCE from a sectoral perspective. Therefore, this study accounts for the NCE in 24 sectors, including the household sector. Then, an improved environmental semi-closed input–output analysis (ESIOA) method is proposed to integrate CO2 sources and CO2 sinks into a unified analytical framework, which provides an effective tool for direct research on NCE. Using the improved ESIOA method, this study investigates the intersectoral transfers and underlying drivers of NCE in China from 2010 to 2018. The results would serve as a targeted reference for the carbon neutrality path. The results reveal that NCE increased by 28.76 % during this period, with the embodied NCE concentrated in the manufacturing and construction sectors. Intermediate uses, rather than final demand, are responsible for most embodied NCE. The two paths associated with the construction sector were important production chains for the reduction in NCE. The expansion of final demand was the key driver of the increase in NCE, while technological progress played an important role in the decrease in NCE.

Suggested Citation

  • Wang, Yizhong & Hang, Ye & Jeong, Sujong & Wang, Qunwei, 2023. "Intersectoral transfers and drivers of net CO2 emissions in China incorporating sources and sinks," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:tefoso:v:195:y:2023:i:c:s0040162523004432
    DOI: 10.1016/j.techfore.2023.122758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523004432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhenni & Liu, Xi & Li, Jianglong, 2022. "Identifying channels of environmental impacts of transport sector through sectoral linkage analysis," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    2. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    3. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    4. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    5. Wang, Ke & Wang, Jiayu & Wei, Yi-Ming & Zhang, Chi, 2018. "A novel dataset of emission abatement sector extended input-output table for environmental policy analysis," Applied Energy, Elsevier, vol. 231(C), pages 1259-1267.
    6. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    7. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input–output analysis for China: A survey of the literature," Energy Economics, Elsevier, vol. 48(C), pages 81-88.
    8. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    9. Du, Mengbing & Zhang, Xiaoling & Xia, Lang & Cao, Libin & Zhang, Zhe & Zhang, Li & Zheng, Heran & Cai, Bofeng, 2022. "The China Carbon Watch (CCW) system: A rapid accounting of household carbon emissions in China at the provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Sai Liang & Tiantian Feng & Shen Qu & Anthony S.F. Chiu & Xiaoping Jia & Ming Xu, 2017. "Developing the Chinese Environmentally Extended Input-Output (CEEIO) Database," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 953-965, August.
    11. Maria Waldinger, 2022. "The Economic Effects of Long-Term Climate Change: Evidence from the Little Ice Age," Journal of Political Economy, University of Chicago Press, vol. 130(9), pages 2275-2314.
    12. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    13. Mohmmed, Alnail & Li, Jianhua & Elaru, Joshua & Elbashier, Mohammed M.A. & Keesstra, Saskia & Artemi, Cerdà & Martin, Kabenge & Reuben, Makomere & Teffera, Zeben, 2018. "Assessing drought vulnerability and adaptation among farmers in Gadaref region, Eastern Sudan," Land Use Policy, Elsevier, vol. 70(C), pages 402-413.
    14. Yuan, Rong & Behrens, Paul & Rodrigues, João F.D., 2018. "The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012," Energy Economics, Elsevier, vol. 69(C), pages 404-417.
    15. William Baumol, 2000. "Leontief's Great Leap Forward: Beyond Quesnay, Marx and von Bortkiewicz," Economic Systems Research, Taylor & Francis Journals, vol. 12(2), pages 141-152.
    16. Ang, B.W. & Liu, Na, 2007. "Negative-value problems of the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 739-742, January.
    17. Tian, Xin & Chang, Miao & Tanikawa, Hiroki & Shi, Feng & Imura, Hidefumi, 2013. "Structural decomposition analysis of the carbonization process in Beijing: A regional explanation of rapid increasing carbon dioxide emission in China," Energy Policy, Elsevier, vol. 53(C), pages 279-286.
    18. Manfred Lenzen, 2011. "Aggregation Versus Disaggregation In Input-Output Analysis Of The Environment," Economic Systems Research, Taylor & Francis Journals, vol. 23(1), pages 73-89.
    19. Lin, Boqiang & Teng, Yuqiang, 2022. "Structural path and decomposition analysis of sectoral carbon emission changes in China," Energy, Elsevier, vol. 261(PB).
    20. Defourny, Jacques & Thorbecke, Erik, 1984. "Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework," Economic Journal, Royal Economic Society, vol. 94(373), pages 111-136, March.
    21. Camilo Mora & Tristan McKenzie & Isabella M. Gaw & Jacqueline M. Dean & Hannah Hammerstein & Tabatha A. Knudson & Renee O. Setter & Charlotte Z. Smith & Kira M. Webster & Jonathan A. Patz & Erik C. Fr, 2022. "Over half of known human pathogenic diseases can be aggravated by climate change," Nature Climate Change, Nature, vol. 12(9), pages 869-875, September.
    22. Li, Xue & Smyth, Russell & Yao, Yao, 2023. "Extreme temperatures and out-of-pocket medical expenditure: Evidence from China," China Economic Review, Elsevier, vol. 77(C).
    23. Schmidt, Robert C. & Heitzig, Jobst, 2014. "Carbon leakage: Grandfathering as an incentive device to avert firm relocation," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 209-223.
    24. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    25. Bhagwan, N. & Evans, M., 2023. "A review of industry 4.0 technologies used in the production of energy in China, Germany, and South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    26. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
    27. Shinichiro Nakamura & Kenichi Nakajima & Yasushi Kondo & Tetsuya Nagasaka, 2007. "The Waste Input‐Output Approach to Materials Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 11(4), pages 50-63, October.
    28. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    29. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    30. Chen, Jiandong & Fan, Wei & Li, Ding & Liu, Xin & Song, Malin, 2020. "Driving factors of global carbon footprint pressure: Based on vegetation carbon sequestration," Applied Energy, Elsevier, vol. 267(C).
    31. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    32. Hong, Jingke & Shen, Qiping & Xue, Fan, 2016. "A multi-regional structural path analysis of the energy supply chain in China's construction industry," Energy Policy, Elsevier, vol. 92(C), pages 56-68.
    33. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    34. Sun, Ya-Yen & Cadarso, Maria Angeles & Driml, Sally, 2020. "Tourism carbon footprint inventories: A review of the environmentally extended input-output approach," Annals of Tourism Research, Elsevier, vol. 82(C).
    35. David Bauman & Claire Fortunel & Guillaume Delhaye & Yadvinder Malhi & Lucas A. Cernusak & Lisa Patrick Bentley & Sami W. Rifai & Jesús Aguirre-Gutiérrez & Imma Oliveras Menor & Oliver L. Phillips & B, 2022. "Tropical tree mortality has increased with rising atmospheric water stress," Nature, Nature, vol. 608(7923), pages 528-533, August.
    36. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    37. Nema, Pragya & Nema, Sameer & Roy, Priyanka, 2012. "An overview of global climate changing in current scenario and mitigation action," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2329-2336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Su, Bin & Liu, Yue & Renfei, Xv, 2023. "Embodied energy intensity of global high energy consumption industries: A case study of the construction industry," Energy, Elsevier, vol. 277(C).
    2. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    3. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    4. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    5. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    6. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    7. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    8. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    9. Chen, Zhenni & Liu, Xi & Li, Jianglong, 2022. "Identifying channels of environmental impacts of transport sector through sectoral linkage analysis," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    10. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    11. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    12. Xu, Duo & Liu, Gengyuan & Meng, Fanxin & Yan, Ningyu & Li, Hui & Agostinho, Feni & Almeida, Cecilia MVB & Giannetti, Biagio F, 2023. "Sector aggregation effect on embodied carbon emission based on city-centric global multi-region input-output (CCG-MRIO) model," Ecological Modelling, Elsevier, vol. 484(C).
    13. Hertwich, Edgar, 2020. "Carbon fueling complex global value chains tripled in the period 1995-2012," SocArXiv zb3rh, Center for Open Science.
    14. Shi, Jianglan & Li, Chao & Li, Huajiao, 2022. "Energy consumption in China's ICT sectors: From the embodied energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    16. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    17. Ding, Yakui & Li, Yongping & Zheng, Heran & Meng, Jing & Lv, Jing & Huang, Guohe, 2022. "Identifying critical energy-water paths and clusters within the urban agglomeration using machine learning algorithm," Energy, Elsevier, vol. 250(C).
    18. Wang, Ke & Wang, Jiayu & Wei, Yi-Ming & Zhang, Chi, 2018. "A novel dataset of emission abatement sector extended input-output table for environmental policy analysis," Applied Energy, Elsevier, vol. 231(C), pages 1259-1267.
    19. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    20. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:195:y:2023:i:c:s0040162523004432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.