IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v205y2017icp1571-1582.html
   My bibliography  Save this article

Economic and energetic analysis of biofuel supply chains

Author

Listed:
  • Ng, Rex T.L.
  • Maravelias, Christos T.

Abstract

We show how different supply chain configurations affect the economic performance and energy efficiency of biofuel supply chains. Despite the additional costs and energy required for installing and operating regional depots, transportation costs and energy savings are observed when depots are combined with the appropriate transportation modes at longer distances. We introduce a hybrid configuration which combines various configurations and leads to better economic performance and higher energy efficiency. We further study the impact of various factors on the performance of the biofuel supply chain: distance between harvesting site and depot, biomass productivity, biorefinery size, and densification efficiency. We show that biomass should be shipped directly to biorefineries when the distance is small, while depots are preferred at larger distances. The hybrid configuration offers lower minimum ethanol selling price and energy input for larger biorefineries. Furthermore, we study how improvements in densification technologies can reduce transportation cost and energy consumption.

Suggested Citation

  • Ng, Rex T.L. & Maravelias, Christos T., 2017. "Economic and energetic analysis of biofuel supply chains," Applied Energy, Elsevier, vol. 205(C), pages 1571-1582.
  • Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:1571-1582
    DOI: 10.1016/j.apenergy.2017.08.161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917311807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awudu, Iddrisu & Zhang, Jun, 2012. "Uncertainties and sustainability concepts in biofuel supply chain management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1359-1368.
    2. Hu, Hao & Lin, Tao & Wang, Shaowen & Rodriguez, Luis F., 2017. "A cyberGIS approach to uncertainty and sensitivity analysis in biomass supply chain optimization," Applied Energy, Elsevier, vol. 203(C), pages 26-40.
    3. Sultana, Arifa & Kumar, Amit, 2014. "Development of tortuosity factor for assessment of lignocellulosic biomass delivery cost to a biorefinery," Applied Energy, Elsevier, vol. 119(C), pages 288-295.
    4. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    5. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    6. Gautam, Shuva & LeBel, Luc & Carle, Marc-André, 2017. "Supply chain model to assess the feasibility of incorporating a terminal between forests and biorefineries," Applied Energy, Elsevier, vol. 198(C), pages 377-384.
    7. Gonzales, Daniela & Searcy, Erin M. & Ekşioğlu, Sandra D., 2013. "Cost analysis for high-volume and long-haul transportation of densified biomass feedstock," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 48-61.
    8. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    9. Ng, Rex T.L. & Maravelias, Christos T., 2017. "Design of biofuel supply chains with variable regional depot and biorefinery locations," Renewable Energy, Elsevier, vol. 100(C), pages 90-102.
    10. Won, Wangyun & Maravelias, Christos T., 2017. "Thermal fractionation and catalytic upgrading of lignocellulosic biomass to biofuels: Process synthesis and analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 357-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadi, Ehsan & Habibi, Farhad & Nickel, Stefan & Sahebi, Hadi, 2018. "A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain," Applied Energy, Elsevier, vol. 228(C), pages 2235-2261.
    2. Ng, Rex T.L. & Fasahati, Peyman & Huang, Kefeng & Maravelias, Christos T., 2019. "Utilizing stillage in the biorefinery: Economic, technological and energetic analysis," Applied Energy, Elsevier, vol. 241(C), pages 491-503.
    3. Jiang, Anna & Lansford, Jennifer E., 2023. "State-level legal and sociodemographic correlates of child marriage rates in the United States," Children and Youth Services Review, Elsevier, vol. 145(C).
    4. Sthanu R Nair, 2021. "Agrarian suicides in India: Myth and reality," Development Policy Review, Overseas Development Institute, vol. 39(1), pages 3-21, January.
    5. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    6. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    7. Zetterholm, Jonas & Pettersson, Karin & Leduc, Sylvain & Mesfun, Sennai & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquids," Applied Energy, Elsevier, vol. 230(C), pages 912-924.
    8. Furtado Júnior, Juarez Corrêa & Palacio, José Carlos Escobar & Leme, Rafael Coradi & Lora, Electo Eduardo Silva & da Costa, José Eduardo Loureiro & Reyes, Arnaldo Martín Martínez & del Olmo, Oscar Alm, 2020. "Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry," Applied Energy, Elsevier, vol. 259(C).
    9. Fasahati, Peyman & Liu, J. Jay & Ohlrogge, John B. & Saffron, Christopher M., 2019. "Process design and economics for production of advanced biofuels from genetically modified lipid-producing sorghum," Applied Energy, Elsevier, vol. 239(C), pages 1459-1470.
    10. Hoo Poh Ying & Cassendra Bong Phun Chien & Fan Yee Van, 2020. "Operational Management Implemented in Biofuel Upstream Supply Chain and Downstream International Trading: Current Issues in Southeast Asia," Energies, MDPI, vol. 13(7), pages 1-26, April.
    11. Bašić Maja & Kovše Špela & Opačić Andraž & Obrecht Matevž & Pecarević Marijana, 2023. "Supply chain management mitigation to climate change in three selected industrial sectors," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 14(1), pages 1-13, December.
    12. Geissler, Caleb H. & Maravelias, Christos T., 2021. "Economic, energetic, and environmental analysis of lignocellulosic biorefineries with carbon capture," Applied Energy, Elsevier, vol. 302(C).
    13. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.
    14. He-Lambert, Lixia & English, Burton C. & Lambert, Dayton M. & Shylo, Oleg & Larson, James A. & Yu, T. Edward & Wilson, Bradly, 2018. "Determining a geographic high resolution supply chain network for a large scale biofuel industry," Applied Energy, Elsevier, vol. 218(C), pages 266-281.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.
    2. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    3. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    4. Aalto, Mika & KC, Raghu & Korpinen, Olli-Jussi & Karttunen, Kalle & Ranta, Tapio, 2019. "Modeling of biomass supply system by combining computational methods – A review article," Applied Energy, Elsevier, vol. 243(C), pages 145-154.
    5. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    7. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    8. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    9. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    10. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    11. Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
    12. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    13. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    14. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A.Md., 2017. "Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 914-923.
    16. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    17. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Kesharwani, Rajkamal & Sun, Zeyi & Dagli, Cihan & Xiong, Haoyi, 2019. "Moving second generation biofuel manufacturing forward: Investigating economic viability and environmental sustainability considering two strategies for supply chain restructuring," Applied Energy, Elsevier, vol. 242(C), pages 1467-1496.
    19. Guo, Changqiang & Hu, Hao & Wang, Shaowen & Rodriguez, Luis F. & Ting, K.C. & Lin, Tao, 2022. "Multiperiod stochastic programming for biomass supply chain design under spatiotemporal variability of feedstock supply," Renewable Energy, Elsevier, vol. 186(C), pages 378-393.
    20. Cambero, Claudia & Sowlati, Taraneh, 2016. "Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 178(C), pages 721-735.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:1571-1582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.