IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v100y2017icp90-102.html
   My bibliography  Save this article

Design of biofuel supply chains with variable regional depot and biorefinery locations

Author

Listed:
  • Ng, Rex T.L.
  • Maravelias, Christos T.

Abstract

We propose a multi-period mixed-integer linear programming (MILP) model for the design and operational planning of cellulosic biofuel supply chains. Specifically, the proposed MILP model accounts for biomass selection and allocation, technology selection and capacity planning at regional depots and biorefineries. Importantly, it considers the location of regional depots and biorefineries as continuous optimization decisions. We introduce approximation and reformulation methods for the calculation of the shipments and transportation distance in order to obtain a linear model. We illustrate the applicability of the proposed methods using two medium-scale examples with realistic data.

Suggested Citation

  • Ng, Rex T.L. & Maravelias, Christos T., 2017. "Design of biofuel supply chains with variable regional depot and biorefinery locations," Renewable Energy, Elsevier, vol. 100(C), pages 90-102.
  • Handle: RePEc:eee:renene:v:100:y:2017:i:c:p:90-102
    DOI: 10.1016/j.renene.2016.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2016. "Considering biomass growth and regeneration in the optimisation of biomass supply chains," Renewable Energy, Elsevier, vol. 87(P2), pages 990-1002.
    2. Giarola, Sara & Zamboni, Andrea & Bezzo, Fabrizio, 2012. "Environmentally conscious capacity planning and technology selection for bioethanol supply chains," Renewable Energy, Elsevier, vol. 43(C), pages 61-72.
    3. Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
    4. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    5. Awudu, Iddrisu & Zhang, Jun, 2013. "Stochastic production planning for a biofuel supply chain under demand and price uncertainties," Applied Energy, Elsevier, vol. 103(C), pages 189-196.
    6. Zhang, Fengli & Johnson, Dana & Johnson, Mark & Watkins, David & Froese, Robert & Wang, Jinjiang, 2016. "Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain," Renewable Energy, Elsevier, vol. 85(C), pages 740-748.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain, Tasmin & Jones, Daniela & Hartley, Damon & Griffel, L. Michael & Lin, Yingqian & Burli, Pralhad & Thompson, David N. & Langholtz, Matthew & Davis, Maggie & Brandt, Craig, 2021. "The nth-plant scenario for blended feedstock conversion and preprocessing nationwide: Biorefineries and depots," Applied Energy, Elsevier, vol. 294(C).
    2. Albashabsheh, Nibal T. & Heier Stamm, Jessica L., 2019. "Optimization of lignocellulosic biomass-to-biofuel supply chains with mobile pelleting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 545-562.
    3. Li, Yu & Kesharwani, Rajkamal & Sun, Zeyi & Qin, Ruwen & Dagli, Cihan & Zhang, Meng & Wang, Donghai, 2020. "Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology," Applied Energy, Elsevier, vol. 259(C).
    4. Najafi, Fatemeh & Sedaghat, Ahmad & Mostafaeipour, Ali & Issakhov, Alibek, 2021. "Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran," Energy, Elsevier, vol. 236(C).
    5. Ng, Rex T.L. & Maravelias, Christos T., 2017. "Economic and energetic analysis of biofuel supply chains," Applied Energy, Elsevier, vol. 205(C), pages 1571-1582.
    6. Gulnar Shaimardanovna Kaliakparova & Y?lena Evgenevna Gridneva & Sara Sarsebekovna Assanova & Sandugash Babagalikyzy Sauranbay & Abdizhapar Djumanovich Saparbayev, 2020. "International Economic Cooperation of Central Asian Countries on Energy Efficiency and Use of Renewable Energy Sources," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 539-545.
    7. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    8. Ge, Yuntian & Li, Lin & Yun, Lingxiang, 2021. "Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways," Applied Energy, Elsevier, vol. 281(C).
    9. Hoo Poh Ying & Cassendra Bong Phun Chien & Fan Yee Van, 2020. "Operational Management Implemented in Biofuel Upstream Supply Chain and Downstream International Trading: Current Issues in Southeast Asia," Energies, MDPI, vol. 13(7), pages 1-26, April.
    10. Kesharwani, Rajkamal & Sun, Zeyi & Dagli, Cihan & Xiong, Haoyi, 2019. "Moving second generation biofuel manufacturing forward: Investigating economic viability and environmental sustainability considering two strategies for supply chain restructuring," Applied Energy, Elsevier, vol. 242(C), pages 1467-1496.
    11. Wang, Zhanwu & Wang, Zhenfeng & Tahir, Nadeem & Wang, Heng & Li, Jin & Xu, Guangyin, 2020. "Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive," Energy Policy, Elsevier, vol. 146(C).
    12. Kheybari, Siamak & Kazemi, Mostafa & Rezaei, Jafar, 2019. "Bioethanol facility location selection using best-worst method," Applied Energy, Elsevier, vol. 242(C), pages 612-623.
    13. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    14. Ibrahim M. Hezam & Fausto Cavallaro & Jyoti Lakshmi & Pratibha Rani & Subhanshu Goyal, 2023. "Biofuel Production Plant Location Selection Using Integrated Picture Fuzzy Weighted Aggregated Sum Product Assessment Framework," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    15. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.
    16. He-Lambert, Lixia & English, Burton C. & Lambert, Dayton M. & Shylo, Oleg & Larson, James A. & Yu, T. Edward & Wilson, Bradly, 2018. "Determining a geographic high resolution supply chain network for a large scale biofuel industry," Applied Energy, Elsevier, vol. 218(C), pages 266-281.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    2. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.
    3. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    4. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    5. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    6. Gonela, Vinay & Zhang, Jun & Osmani, Atif & Onyeaghala, Raphael, 2015. "Stochastic optimization of sustainable hybrid generation bioethanol supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 1-28.
    7. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    8. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    9. Md Abu Helal & Nathaniel Anderson & Yu Wei & Matthew Thompson, 2023. "A Review of Biomass-to-Bioenergy Supply Chain Research Using Bibliometric Analysis and Visualization," Energies, MDPI, vol. 16(3), pages 1-32, January.
    10. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    12. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Li, Yang & Su, Zhanpeng, 2022. "Agri-biomass supply chain optimization in north China: Model development and application," Energy, Elsevier, vol. 239(PD).
    13. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    14. Sharma, B. & Birrell, S. & Miguez, F.E., 2017. "Spatial modeling framework for bioethanol plant siting and biofuel production potential in the U.S," Applied Energy, Elsevier, vol. 191(C), pages 75-86.
    15. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    16. Cambero, Claudia & Sowlati, Taraneh, 2016. "Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 178(C), pages 721-735.
    17. Sam Van Holsbeeck & Mark Brown & Sanjeev Kumar Srivastava & Mohammad Reza Ghaffariyan, 2020. "A Review on the Potential of Forest Biomass for Bioenergy in Australia," Energies, MDPI, vol. 13(5), pages 1-19, March.
    18. Tan, Qinliang & Wang, Tingran & Zhang, Yimei & Miao, Xinyan & Zhu, Jun, 2017. "Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China," Energy, Elsevier, vol. 139(C), pages 1066-1079.
    19. Azadeh, Ali & Vafa Arani, Hamed & Dashti, Hossein, 2014. "A stochastic programming approach towards optimization of biofuel supply chain," Energy, Elsevier, vol. 76(C), pages 513-525.
    20. Li, Yuanzhe, 2019. "Modeling Bioenergy Supply Chains: Feedstocks Pretreatment, Integrated System Design Under Uncertainty," Institute of Transportation Studies, Working Paper Series qt1539g5sj, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:100:y:2017:i:c:p:90-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.