IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p135-145.html
   My bibliography  Save this article

Total footprints-based multi-criteria optimisation of regional biomass energy supply chains

Author

Listed:
  • Čuček, Lidija
  • Varbanov, Petar Sabev
  • Klemeš, Jiří Jaromír
  • Kravanja, Zdravko

Abstract

This paper presents a MCO (multi-criteria optimisation) of regional biomass supply chains for the conversion of biomass to energy through the simultaneous maximisation of economic performance and minimisation of the environmental and social FPs (footprints). The energy supply-chain model contains agricultural, pre-processing, processing, and distribution layers. An integrated model, previously developed by the authors, for regional biomass energy network optimisation is used as a basis, and now extended for simultaneous assessment of the supply-chain performance based on LCA (Life cycle assessment). Several total FPs are introduced for “cradle” to “grave” evaluation, which, besides direct, comprises also indirect effects caused by products’ substitutions. In the MCO approach, the annual profit is maximised against each FP generating different sets of Pareto optimal solutions, one for each FP. With this approach the aggregation of different environmental and/or social pressures is thus avoided. The results indicate that total FPs enable the obtaining of more realistic solutions, than in those cases when only direct FPs are considered. More profitable and less environmentally harmful solutions can be gained with significant reduction in total carbon and total energy FPs.

Suggested Citation

  • Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:135-145
    DOI: 10.1016/j.energy.2012.01.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421200045X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.01.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Verónica & Päkkilä, Johanna & Ojamo, Heikki & Muurinen, Esa & Keiski, Riitta L., 2011. "Challenges in biobutanol production: How to improve the efficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 964-980, February.
    2. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    3. Guzović, Z. & Lončar, D. & Ferdelji, N., 2010. "Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy," Energy, Elsevier, vol. 35(8), pages 3429-3440.
    4. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    5. Redha, Adel Mohammed & Dincer, Ibrahim & Gadalla, Mohamed, 2011. "Thermodynamic performance assessment of wind energy systems: An application," Energy, Elsevier, vol. 36(7), pages 4002-4010.
    6. Lam, Hon Loong & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2011. "Model-size reduction techniques for large-scale biomass production and supply networks," Energy, Elsevier, vol. 36(8), pages 4599-4608.
    7. Münster, Marie & Meibom, Peter, 2011. "Optimization of use of waste in the future energy system," Energy, Elsevier, vol. 36(3), pages 1612-1622.
    8. Touš, Michal & Pavlas, Martin & Stehlík, Petr & Popela, Pavel, 2011. "Effective biomass integration into existing combustion plant," Energy, Elsevier, vol. 36(8), pages 4654-4662.
    9. Papapostolou, Christiana & Kondili, Emilia & Kaldellis, John K., 2011. "Development and implementation of an optimisation model for biofuels supply chain," Energy, Elsevier, vol. 36(10), pages 6019-6026.
    10. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun, 2010. "Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics," Energy, Elsevier, vol. 35(5), pages 2210-2222.
    11. Sanchez-Choliz, Julio & Duarte, Rosa, 2005. "Water pollution in the Spanish economy: analysis of sensitivity to production and environmental constraints," Ecological Economics, Elsevier, vol. 53(3), pages 325-338, May.
    12. Varbanov, Petar & Klemeš, Jiří, 2008. "Analysis and integration of fuel cell combined cycles for development of low-carbon energy technologies," Energy, Elsevier, vol. 33(10), pages 1508-1517.
    13. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    14. Kissinger, Meidad & Gottlieb, Dan, 2010. "Place oriented ecological footprint analysis -- The case of Israel's grain supply," Ecological Economics, Elsevier, vol. 69(8), pages 1639-1645, June.
    15. Tan, K.T. & Lee, K.T. & Mohamed, A.R., 2011. "Potential of waste palm cooking oil for catalyst-free biodiesel production," Energy, Elsevier, vol. 36(4), pages 2085-2088.
    16. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    17. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    2. Matsuda, Kazuo & Hirochi, Yoshiichi & Tatsumi, Hiroyuki & Shire, Tim, 2009. "Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants," Energy, Elsevier, vol. 34(10), pages 1687-1692.
    3. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    4. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    5. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    6. Kiraly, Annamaria & Pahor, Bojan & Kravanja, Zdravko, 2013. "Achieving energy self-sufficiency by integrating renewables into companies' supply networks," Energy, Elsevier, vol. 55(C), pages 46-57.
    7. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    8. Franki, Vladimir & Višković, Alfredo, 2015. "Energy security, policy and technology in South East Europe: Presenting and applying an energy security index to Croatia," Energy, Elsevier, vol. 90(P1), pages 494-507.
    9. Henders, Sabine & Ostwald, Madelene, 2014. "Accounting methods for international land-related leakage and distant deforestation drivers," Ecological Economics, Elsevier, vol. 99(C), pages 21-28.
    10. Azadeh, Ali & Vafa Arani, Hamed & Dashti, Hossein, 2014. "A stochastic programming approach towards optimization of biofuel supply chain," Energy, Elsevier, vol. 76(C), pages 513-525.
    11. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    12. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    13. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    14. Guzović, Zvonimir & Rašković, Predrag & Blatarić, Zoran, 2014. "The comparision of a basic and a dual-pressure ORC (Organic Rankine Cycle): Geothermal Power Plant Velika Ciglena case study," Energy, Elsevier, vol. 76(C), pages 175-186.
    15. Baglivi, Antonella & Fiorese, Giulia & Guariso, Giorgio & Uggè, Clara, 2015. "Valuing crop diversity in biodiesel production plans," Energy, Elsevier, vol. 93(P2), pages 2351-2362.
    16. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    17. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    20. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:135-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.