IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp1459-1470.html
   My bibliography  Save this article

Process design and economics for production of advanced biofuels from genetically modified lipid-producing sorghum

Author

Listed:
  • Fasahati, Peyman
  • Liu, J. Jay
  • Ohlrogge, John B.
  • Saffron, Christopher M.

Abstract

This study evaluates the potential for making advanced biofuels from genetically modified (GM) lipid–producing sorghum. A biodiesel coproduction process is developed to extract, purify, and upgrade lipids to diesel fuel while carbohydrates are utilized for making ethanol through acid thermal pretreatment, enzymatic hydrolysis, and fermentation. To assess the advantages of coproducing biodiesel from GM–sorghum, process economics are compared to a cellulosic ethanol biorefinery receiving non-GM sorghum. Minimum ethanol selling prices (MESP) that reach a breakeven point after 30 years of service life are calculated as an economic index to compare the two processes. Results indicate that biodiesel coproduction improves the economics by lowering the MESP from $3.08/gal for the ethanol-only process to $2.46/gal. Sensitivity analyses reveal that increasing sorghum’s lipid content, increasing the lipid extraction efficiency, and reducing the solvent-to-solids ratio in lipid extraction columns are the most important process parameters to further enhance technoeconomics. Analyses indicate that a lipid content above 13 wt% (dry basis) or a biomass price less than $65/Mg (dry basis) will result in a 2014 ethanol wholesale price of $2.25/gal for the coproduction process.

Suggested Citation

  • Fasahati, Peyman & Liu, J. Jay & Ohlrogge, John B. & Saffron, Christopher M., 2019. "Process design and economics for production of advanced biofuels from genetically modified lipid-producing sorghum," Applied Energy, Elsevier, vol. 239(C), pages 1459-1470.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1459-1470
    DOI: 10.1016/j.apenergy.2019.01.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919301667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Caixia & Xie, Gaodi & Li, Shimei & Ge, Liqiang & He, Tingting, 2010. "The productive potentials of sweet sorghum ethanol in China," Applied Energy, Elsevier, vol. 87(7), pages 2360-2368, July.
    2. Souza, Simone Pereira & Seabra, Joaquim E.A., 2013. "Environmental benefits of the integrated production of ethanol and biodiesel," Applied Energy, Elsevier, vol. 102(C), pages 5-12.
    3. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    4. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    5. Fasahati, Peyman & Woo, Hee Chul & Liu, J. Jay, 2015. "Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics," Applied Energy, Elsevier, vol. 139(C), pages 175-187.
    6. Griffith, Andrew P. & Haque, Mohua & Epplin, Francis M., 2014. "Cost to produce and deliver cellulosic feedstock to a biorefinery: Switchgrass and forage sorghum," Applied Energy, Elsevier, vol. 127(C), pages 44-54.
    7. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    8. Ng, Rex T.L. & Maravelias, Christos T., 2017. "Economic and energetic analysis of biofuel supply chains," Applied Energy, Elsevier, vol. 205(C), pages 1571-1582.
    9. Nanda, Sonil & Azargohar, Ramin & Dalai, Ajay K. & Kozinski, Janusz A., 2015. "An assessment on the sustainability of lignocellulosic biomass for biorefining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 925-941.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    2. Fasahati, Peyman & Wu, Wenzhao & Maravelias, Christos T., 2019. "Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2021. "Evaluation of n-butene synthesis from dimethyl ether in the production of 1,3-butadiene from lignin: A techno-economic analysis," Renewable Energy, Elsevier, vol. 163(C), pages 964-973.
    4. Vasilakou, Konstantina & Nimmegeers, Philippe & Thomassen, Gwenny & Billen, Pieter & Van Passel, Steven, 2023. "Assessing the future of second-generation bioethanol by 2030 – A techno-economic assessment integrating technology learning curves," Applied Energy, Elsevier, vol. 344(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.
    2. Alejos Altamirano, Carlos Alberto & Yokoyama, Lídia & de Medeiros, José Luiz & de Queiroz Fernandes Araújo, Ofélia, 2016. "Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment," Applied Energy, Elsevier, vol. 184(C), pages 1246-1263.
    3. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    4. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    5. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    6. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    7. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    8. Hongbo Liu & Shuanglu Liang, 2019. "The Nexus between Energy Consumption, Biodiversity, and Economic Growth in Lancang-Mekong Cooperation (LMC): Evidence from Cointegration and Granger Causality Tests," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    9. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    11. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    12. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayın, Cenk, 2020. "Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator," Energy, Elsevier, vol. 207(C).
    13. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    14. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    15. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    16. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    17. Ida Farida & Faurani Santi Singagerda, 2021. "Volatilitiy of World Food Commodity Prices and Renewable Fuel Standard Policy," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 516-527.
    18. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    19. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    20. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1459-1470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.